Morphological, physiological and biochemical aspects of zinc seed priming-induced drought tolerance in faba bean

2021 ◽  
Vol 281 ◽  
pp. 109894
Author(s):  
Muhammad Farooq ◽  
Sara Ali Darwish Almamari ◽  
Abdul Rehman ◽  
Walid Mubarak Al-Busaidi ◽  
Abdul Wahid ◽  
...  
Genes ◽  
2020 ◽  
Vol 11 (8) ◽  
pp. 919
Author(s):  
Luping Huang ◽  
Lei Zhang ◽  
Ruier Zeng ◽  
Xinyue Wang ◽  
Huajian Zhang ◽  
...  

Drought negatively affects the growth and yield of terrestrial crops. Seed priming, pre-exposing seed to a compound, could induce improved tolerance and adaptation to stress in germinated plants. To understand the effects and regulatory mechanism of seed priming with brassinosteroid (BR) on peanut plants, we treated seeds with five BR concentrations and examined dozens of physiological and biochemical features, and transcriptomic changes in leaves under well-watered and drought conditions. We found optimal 0.15 ppm BR priming could reduce inhibitions from drought and increase the yield of peanut, and priming effects are dependent on stage of plant development and duration of drought. BR priming induced fewer differentially expressed genes (DEGs) than no BR priming under well-watered condition. Drought with BR priming reduced the number of DEGs than drought only. These DEGs were enriched in varied gene ontologies and metabolism pathways. Downregulation of DEGs involved in both light perceiving and photosynthesis in leaves is consistent with low parameters of photosynthesis. Optimal BR priming partially rescued the levels of growth promoting auxin and gibberellin which were largely reduced by drought, and increased levels of defense associated abscisic acid and salicylic acid after long-term drought. BR priming induced many DEGs which function as kinase or transcription factor for signal cascade under drought. We proposed BR priming-induced regulatory responses will be memorized and recalled for fast adaptation in later drought stress. These results provide physiological and regulatory bases of effects of seed priming with BR, which can help to guide the framing improvement under drought stress.


2020 ◽  
Author(s):  
Dijana Ocvirk ◽  
Marija Špoljarević ◽  
Marija Kristić ◽  
John T. Hancock ◽  
Tihana Teklić ◽  
...  

2020 ◽  
Vol 21 (21) ◽  
pp. 8258 ◽  
Author(s):  
Vishvanathan Marthandan ◽  
Rathnavel Geetha ◽  
Karunanandham Kumutha ◽  
Vellaichamy Gandhimeyyan Renganathan ◽  
Adhimoolam Karthikeyan ◽  
...  

Drought is a serious threat to the farming community, biasing the crop productivity in arid and semi-arid regions of the world. Drought adversely affects seed germination, plant growth, and development via non-normal physiological processes. Plants generally acclimatize to drought stress through various tolerance mechanisms, but the changes in global climate and modern agricultural systems have further worsened the crop productivity. In order to increase the production and productivity, several strategies such as the breeding of tolerant varieties and exogenous application of growth regulators, osmoprotectants, and plant mineral nutrients are followed to mitigate the effects of drought stress. Nevertheless, the complex nature of drought stress makes these strategies ineffective in benefiting the farming community. Seed priming is an alternative, low-cost, and feasible technique, which can improve drought stress tolerance through enhanced and advanced seed germination. Primed seeds can retain the memory of previous stress and enable protection against oxidative stress through earlier activation of the cellular defense mechanism, reduced imbibition time, upsurge of germination promoters, and osmotic regulation. However, a better understanding of the metabolic events during the priming treatment is needed to use this technology in a more efficient way. Interestingly, the review highlights the morphological, physiological, biochemical, and molecular responses of seed priming for enhancing the drought tolerance in crop plants. Furthermore, the challenges and opportunities associated with various priming methods are also addressed side-by-side to enable the use of this simple and cost-efficient technique in a more efficient manner.


Author(s):  
D. Sarma ◽  
P. Saikia ◽  
P.K. Sarma ◽  
M. Hazarika ◽  
M. Bhattacharya ◽  
...  

Author(s):  
Cha JinMyong ◽  
Ri CholUk ◽  
Kim Chol Min ◽  
Ri Huang Gi ◽  
Ri Do Hun Qin Bo

Drought stress greatly affects the quality and yield of mulberry leaves, which eventually influences the production of silkworm cocoon. In this study, the effect of calcium chloride on drought tolerance of mulberry was investigated. Different concentrations of CaCl2 solutions were sprayed on the leaves of mulberry under drought condition, and the physiological and biochemical responses were measured. As a result, the spray of CaCl2 on leaves (CaCl2-spray-on-leaves) was proved to have gradual increases in measure parameters as compared to CaCl2-untreated case under the same drought condition; furthermore, 20mM CaCl2-treated group showed a significant increase (P<0.05), which indicates the optimal CaCl2 concentration for improving the drought tolerance of mulberry. This study demonstrated that CaCl2-spray-on-leaves can be an effective measure to ameliorate the drought tolerance of mulberry in the severe-drought areas.


Silicon ◽  
2021 ◽  
Author(s):  
Muhammad Farman ◽  
Fahim Nawaz ◽  
Sadia Majeed ◽  
Hafiz Muhammad Rashad Javeed ◽  
Muhammad Ahsan ◽  
...  

AbstractThe present study evaluated the effect of silicon (Si) seed priming and sulfur (S) foliar spray on drought tolerance of two contrasting maize hybrids viz. drought tolerant Hi-Corn 11 and susceptible P-1574. The maize seeds were primed with (3 mM Na2SiO3) or without Si (hydropriming) and later sown in pots filled with sandy loam soil. Drought stress (25–30% water holding capacity or WHC) was initiated at cob development stage (V5) for two weeks, whereas the well-watered plants were grown at 65–70% WHC. On appearance of drought symptoms, foliar spray of S was done using 0.5% and 1.0% (NH4)2SO4, whereas water spray was used as a control. The drought-stressed plants were grown for further two weeks at 25–30% WHC before the final harvest. The results showed a marked effect of Si seed priming and foliar S spray on biomass, physiological and enzymatic processes as well as macronutrient concentrations of maize. In comparison to control, the highest increase in leaf relative water content (25%), chlorophyll a content (56%), carotenoids (26%), photosynthetic rate (64%), stomatal conductance (56%) and intercellular CO2 concentration (48%) was observed by Si seed priming + S foliar spray (Si + S) under water deficit conditions. Also, Si + S application stimulated the activity of catalase (45%), guaiacol peroxidase (38%) and superoxide dismutase (55%), and improved NPK concentrations (40–63%) under water limitations. Our results suggest that Si seed priming + foliar spray of S is more effective than the individual application of these nutrients to enhance drought tolerance in maize.


Sign in / Sign up

Export Citation Format

Share Document