Biochar applied with appropriate rates can reduce N leaching, keep N retention and not increase NH3 volatilization in a coastal saline soil

2017 ◽  
Vol 575 ◽  
pp. 820-825 ◽  
Author(s):  
Haijun Sun ◽  
Haiying Lu ◽  
Lei Chu ◽  
Hongbo Shao ◽  
Weiming Shi
2022 ◽  
Vol 12 ◽  
Author(s):  
Ruibo Sun ◽  
Xiaogai Wang ◽  
Yinping Tian ◽  
Kai Guo ◽  
Xiaohui Feng ◽  
...  

Globally soil salinity is one of the most devastating environmental stresses affecting agricultural systems and causes huge economic losses each year. High soil salinity causes osmotic stress, nutritional imbalance and ion toxicity to plants and severely affects crop productivity in farming systems. Freezing saline water irrigation and plastic mulching techniques were successfully developed in our previous study to desalinize costal saline soil. Understanding how microbial communities respond during saline soil amelioration is crucial, given the key roles soil microbes play in ecosystem succession. In the present study, the community composition, diversity, assembly and potential ecological functions of archaea, bacteria and fungi in coastal saline soil under amelioration practices of freezing saline water irrigation, plastic mulching and the combination of freezing saline water irrigation and plastic mulching were assessed through high-throughput sequencing. These amelioration practices decreased archaeal and increased bacterial richness while leaving fungal richness little changed in the surface soil. Functional prediction revealed that the amelioration practices, especially winter irrigation with saline water and film mulched in spring, promoted a community harboring heterotrophic features. β-null deviation analysis illustrated that amelioration practices weakened the deterministic processes in structuring coastal saline soil microbial communities. These results advanced our understanding of the responses of the soil microbiome to amelioration practices and provided useful information for developing microbe-based remediation approaches in coastal saline soils.


2019 ◽  
Vol 11 (22) ◽  
pp. 6219
Author(s):  
Zheng ◽  
Liu ◽  
Nie ◽  
Zuo ◽  
Wang

Active nitrogen loss mainly includes ammonia (NH3) volatilization, nitrous oxide (N2O) emission, NO3−-N and NH4+-N deep leakage (N leaching), and NO3−-N and NH4+-N surface runoff (N runoff), resulting in serious environmental problems. To analyze the characteristics of active nitrogen loss in the four pathways on sloped farmland under conventional fertilization, six lysimeters with a slope of 8° were used. Losses due to NH3 volatilization, N2O emission, N leaching, and N runoff were investigated after urea application on a peanut field with red soil in China during the growing season from 2017–2018. Results reveal that at conventional nitrogen levels of 150 and 172 kg hm−2, the total active nitrogen loss caused by fertilization accounting for the total nitrogen applied was 5.57% and 14.21%, respectively, with the N2O emission coefficients of 0.18% and 0.10%, respectively; the NH3 volatilization coefficients of 2.24% and 0.31%, respectively; the N leakage loss rates of 3.07% and 10.50%, respectively; and the N runoff loss rates of 0.08% and 3.30%, respectively. The dry year was dominated by leaching and NH3 volatilization, while the wet year was dominated by leaching and runoff; the base fertilizer period was dominated by leakage, while the topdressing period was dominated by leakage and runoff, which suggests that the loss of active nitrogen in the soil-peanut system on a sloped red soil was mainly affected by rainfall and fertilization methods. Taken together, reasonable fertilization management and soil and water conservation measures appear to be effective in minimizing the loss of active nitrogen from nitrogen fertilizer.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Linlin Chu ◽  
Yaohu Kang ◽  
Shuqin Wan

Microsprinkler irrigation is a potential method to alleviate soil salinization. After conducting a homogeneous, highly saline, clayey, and coastal soil from the Bohai Gulf in northern China in a column experiment, the results show that the depth of the wetting front increased as the water amount applied increased, low-salinity and low-SAR enlarged after irrigation and water redistribution, and the soil pH increased with an increase in irrigation amount. We concluded that a water amount of 207 mm could be used to reclaim the coastal saline soil in northern China.


Sign in / Sign up

Export Citation Format

Share Document