Irrigation management for arsenic mitigation in rice grain: Timing and severity of a single soil drying

2019 ◽  
Vol 649 ◽  
pp. 300-307 ◽  
Author(s):  
Daniela R. Carrijo ◽  
Chongyang Li ◽  
Sanjai J. Parikh ◽  
Bruce A. Linquist
2017 ◽  
Vol 84 (3) ◽  
pp. 533-548 ◽  
Author(s):  
Zhong Li ◽  
Zhou Li ◽  
Waqas Muhammad ◽  
Manhong Lin ◽  
Saadia Azeem ◽  
...  

Water SA ◽  
2020 ◽  
Vol 46 (2 April) ◽  
Author(s):  
TI Busari ◽  
A Senzanje ◽  
AO Odindo ◽  
CA Buckley

The need for the optimal use of land, without a yield penalty, in urban and peri-urban (UP) settlements is vital. This study investigated the effect of intercropping madumbe and rice with respect to yield and land productivity when irrigated with anaerobic baffled reactor (ABR) effluent under different irrigation water management techniques. It was hypothesized that intercropping under different irrigation water management techniques has no effect on the yield and land productivity. Field trials were conducted in the 2017 and 2018 cropping seasons with ABR effluent (without fertilizer) at the Newlands Mashu Experimental Site, Newlands East, Durban, South Africa. A randomized complete block design with 3 replications; cropping treatments of sole madumbe, sole rice and madumbe + rice (intercrop) and irrigation treatments of alternate wetting and drying (AWD), continuous flood irrigation (CFI) and wetting without flooding (WWF) was used. Growth and yield parameters at harvest were determined. Thereafter, land equivalent ratio (LER) was calculated to evaluate the productivity of the intercrop. The effect of intercropping was significant (P < 0.05) on the total number of irrigation events and total water use. There was a significant reduction (P < 0.05) in plant heights of both madumbe and rice at intercrop. However, the effect on plant height for treatment CFI was positive but not significant (P > 0.05) for both seasons. A significant (P < 0.05) reduction also occurred in the number of madumbe leaves/plant, and panicles/plant and tillers/plant for rice. Intercropping significantly reduced (P < 0.05) madumbe corm and rice grain yield over the two seasons relative to sole cropping.  LER showed that intercropping madumbe with rice was not more productive (LER < 1) than sole cropping of madumbe. It was concluded that over the two-season period, intercropping madumbe and rice do not yield appreciably under any of the three irrigation management techniques applied and the study hypothesis is thus rejected.


Water SA ◽  
2020 ◽  
Vol 46 (2 April) ◽  
Author(s):  
TI Busari ◽  
A Senzanje ◽  
AO Odindo ◽  
CA Buckley

The need for the optimal use of land, without a yield penalty, in urban and peri-urban (UP) settlements is vital. This study investigated the effect of intercropping madumbe and rice with respect to yield and land productivity when irrigated with anaerobic baffled reactor (ABR) effluent under different irrigation water management techniques. It was hypothesized that intercropping under different irrigation water management techniques has no effect on the yield and land productivity. Field trials were conducted in the 2017 and 2018 cropping seasons with ABR effluent (without fertilizer) at the Newlands Mashu Experimental Site, Newlands East, Durban, South Africa. A randomized complete block design with 3 replications; cropping treatments of sole madumbe, sole rice and madumbe + rice (intercrop) and irrigation treatments of alternate wetting and drying (AWD), continuous flood irrigation (CFI) and wetting without flooding (WWF) was used. Growth and yield parameters at harvest were determined. Thereafter, land equivalent ratio (LER) was calculated to evaluate the productivity of the intercrop. The effect of intercropping was significant (P < 0.05) on the total number of irrigation events and total water use. There was a significant reduction (P < 0.05) in plant heights of both madumbe and rice at intercrop. However, the effect on plant height for treatment CFI was positive but not significant (P > 0.05) for both seasons. A significant (P < 0.05) reduction also occurred in the number of madumbe leaves/plant, and panicles/plant and tillers/plant for rice. Intercropping significantly reduced (P < 0.05) madumbe corm and rice grain yield over the two seasons relative to sole cropping.  LER showed that intercropping madumbe with rice was not more productive (LER < 1) than sole cropping of madumbe. It was concluded that over the two-season period, intercropping madumbe and rice do not yield appreciably under any of the three irrigation management techniques applied and the study hypothesis is thus rejected.


2020 ◽  
Author(s):  
Arianna Facchi ◽  
Alice Mayer ◽  
Enrico Chiaradia ◽  
Andrea Ricciardelli ◽  
Michele Rienzner ◽  
...  

&lt;p&gt;In the Mediterranean basin, rice is cultivated over an area of 1,300,000 hectares. The most important rice-producing countries are Italy and Spain in Europe (72% of the EU production; 345,000 ha), and Egypt and Turkey among the extra-EU countries (almost totality of the production; 789,000 ha). Traditionally, rice is grown under continuous flooding; thus, it requires much more irrigation than non-ponded crops. The MEDWATERICE project (PRIMA-Section 2-2018; https://www.medwaterice.org/) aims at exploring sustainability of innovative rice irrigation management solutions, in order to reduce rice water consumption and environmental impacts, and to extend rice cultivation outside of traditional paddy areas to meet the escalating demand. Within the MEDWATERICE project, irrigation management options to address the main site-specific problems are being tested for each rice areas involved in the project (IT, ES, PT, EG, TR). Case studies are being conducted in pilot farms, with the involvement of Stake-Holder Panels (SHPs) in each country. Data collected at the farm level will be extrapolated to the irrigation district level, to support water management decisions and policies. Moreover, indicators for quantitative assessment of environmental, economic and social sustainability of the irrigation options will be defined.&lt;/p&gt;&lt;p&gt;This work illustrates the first year of results for the Italian Case Study (Lomellina area, Pavia) at the pilot farm scale. This area is characterized by a growing water scarcity in drought years in many districts. Within the farm managed by the National Rice Research Center (CRR), in the agricultural season 2019 the experimentation was conducted in six plots of about 20 m x 80 m each, with two replicates for each of the following water regimes: i) water-seeded rice with continuous flooding (WFL), ii) dry-seeded rice with continuous flooding from the 3-4 leaf stage (DFL), and iii) water seeded-rice with alternate wetting and drying from fertilization at the tillering stage (AWD). One out of the two replicates of each treatment was instrumented with: water inflow and outflow meters, set of piezometers, set of tensiometers and water tubes for the irrigation management in the AWD plots. A soil survey was conducted before the agricultural season (EMI sensor and physico-chemical analysis of soil samples). Periodic measurements of crop biometric parameters (LAI, crop height, crop rooting depth) were performed. Moreover, nutrients (TN, NO&lt;sub&gt;3&lt;/sub&gt;, PO&lt;sub&gt;4&lt;/sub&gt;, K) and two widely used pesticides (Sirtaki &amp;#8211; a.i. Clomazone; Tripion E &amp;#8211; a.i. MCPA) were measured in irrigation water (inflow and outflow), groundwater, and porous cups installed at two soil depths (20 and 70 cm, above and below the plough pan). Finally, rice grain yields and quality (As and Cd in the grain) were determined. First results in terms of cumulative water balance components (rainfall, irrigation inflow and outflow, difference in soil and ponding water storage, evapotranspiration, net percolation), water application efficiency (evapotranspiration over net water input), and water productivity (grain production over net water input), will be presented and discussed. Results of a 1D Richard-equation-based numerical simulation model applied to generalize results obtained under the different irrigation regimes will be moreover illustrated.&lt;/p&gt;


2017 ◽  
Vol 82 (2) ◽  
pp. 219-232 ◽  
Author(s):  
Zhixing Zhang ◽  
Yiping Zhang ◽  
Xueqian Liu ◽  
Zhong Li ◽  
Wenxiong Lin

2017 ◽  
Vol 31 (2) ◽  
pp. 330-340 ◽  
Author(s):  
Fabio Schreiber ◽  
Ananda Scherner ◽  
Joseph H. Massey ◽  
Renato Zanella ◽  
Luis A. Avila

Information on the dissipation of clomazone, imazapyr, and imazapic in paddy water under different irrigation system is not available in the literature. The objective of this study was to investigate the effect of two irrigation systems (intermittent (IF) and continuous (CF) flood) on the dissipation of clomazone, imazapyr, and imazapic in paddy water. Imazapic was the least persistent herbicide in paddy water, with DT50-values of approximately 3 and 5d under CF and IF, respectively. Imazapyr required a two-fold increase in time to reach its half-life in water in contrast to imazapic, with DT50-values of approximately 6 and 11d under CF and IF, respectively. Clomazone showed the highest DT50-values, varying between 7 to 21d under CF and IF, respectively. Imazapyr and imazapic dissipation was faster under CF, while clomazone was not affected. This investigation found that the dissipation behaviors of herbicides vary under different rice irrigation regimes. Thus changes in irrigation management, as will be required to produce more rice grain with less water to avoid future scarcity, should consider impacts of flood management on herbicide persistence and environmental behavior.


Water ◽  
2021 ◽  
Vol 13 (20) ◽  
pp. 2816
Author(s):  
Israt Jahan ◽  
Mohammad Anwarul Abedin ◽  
Mohammad Rafiqul Islam ◽  
Mahmud Hossain ◽  
Tahsina Sharmin Hoque ◽  
...  

Globally, the risk of arsenic (As) contamination in soil and rice is well documented across the globe. In Bangladesh, drinking water and rice are two major exposure pathways of As to humans. Therefore, the efficiency of recent technologies to reduce rice As and associated human health risks still need to be deeply investigated. In this direction, a pot experiment was performed to investigate the impact of soil As and agronomic irrigation management on rice (cv. BRRI dhan28) growth, yield, As accumulation, and finally, health risks to humans from consuming rice. Treatment combinations were made with three levels of As (0, 20, and 40 mg kg−1) having two irrigation procedures, including alternate wetting and drying (AWD) and traditional continuous flooding (CF). According to the findings, As pollution in the soil lowered the yield contributing features and rice yield, including panicle length, filled grains per panicle, sterile grains per panicle, 1000-grain weight, grain yield, and straw yield. AWD water management significantly improved the growth performance and productivity of rice. Grain yield was increased by 13% in AWD compared to CF. Rice grain and straw As concentrations were increased to 0.56 mg kg−1 and 15.10 mg kg−1, respectively, in soil with 40 mg kg−1 As and CF water management. AWD treatment significantly reduced grain and straw As contents by 16% and 28%, respectively. Increased grain, straw, and total As uptake was noticed with higher soil As concentrations. The study also found that rising soil As raised non-carcinogenic risks (HQ > 1) and carcinogenic risks (CR > 1.010–4) while AWD lowered health risks compared to CF. Thus, rice farming using AWD irrigation could be a viable and long-term solution for reducing As contamination in rice and associated human health hazards.


2021 ◽  
Vol 11 ◽  
Author(s):  
Cristina P. Fernández-Baca ◽  
Anna M. McClung ◽  
Jeremy D. Edwards ◽  
Eton E. Codling ◽  
Vangimalla R. Reddy ◽  
...  

Arsenic (As) accumulation in rice grain is a significant public health concern. Inorganic As (iAs) is of particular concern because it has increased toxicity as compared to organic As. Irrigation management practices, such as alternate wetting and drying (AWD), as well as genotypic differences between cultivars, have been shown to influence As accumulation in rice grain. A 2 year field study using a Lemont × TeQing backcross introgression line (TIL) mapping population examined the impact of genotype and AWD severity on iAs grain concentrations. The “Safe”-AWD [35–40% soil volumetric water content (VWC)] treatment did not reduce grain iAs levels, whereas the more severe AWD30 (25–30% VWC) consistently reduced iAs concentrations across all genotypes. The TILs displayed a range of iAs concentrations by genotype, from less than 10 to up to 46 μg kg–1 under AWD30 and from 28 to 104 μg kg–1 under Safe-AWD. TIL grain iAs concentrations for flood treatments across both years ranged from 26 to 127 μg kg–1. Additionally, seven quantitative trait loci (QTLs) were identified in the mapping population associated with grain iAs. A subset of eight TILs and their parents were grown to confirm field-identified grain iAs QTLs in a controlled greenhouse environment. Greenhouse results confirmed the genotypic grain iAs patterns observed in the field; however, iAs concentrations were higher under greenhouse conditions as compared to the field. In the greenhouse, the number of days under AWD was negatively correlated with grain iAs concentrations. Thus, longer drying periods to meet the same soil VWC resulted in lower grain iAs levels. Both the number and combinations of iAs-affecting QTLs significantly impacted grain iAs concentrations. Therefore, identifying more grain iAs-affecting QTLs could be important to inform future breeding efforts for low iAs rice varieties. Our study suggests that coupling AWD practices targeting a soil VWC of less than or equal to 30% coupled with the use of cultivars developed to possess multiple QTLs that negatively regulate grain iAs concentrations will be helpful in mitigating exposure of iAs from rice consumption.


Sign in / Sign up

Export Citation Format

Share Document