Heavy metal transporters: Functional mechanisms, regulation, and application in phytoremediation

Author(s):  
Zi Yang ◽  
Fan Yang ◽  
Jia-Lan Liu ◽  
Hai-Tao Wu ◽  
Hao Yang ◽  
...  
Plants ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 54
Author(s):  
Andrea Neri ◽  
Silvia Traversari ◽  
Andrea Andreucci ◽  
Alessandra Francini ◽  
Luca Sebastiani

Populus alba ‘Villafranca’ clone is well-known for its tolerance to cadmium (Cd). To determine the mechanisms of Cd tolerance of this species, wild-type (wt) plants were compared with transgenic plants over-expressing an aquaporin (aqua1, GenBank GQ918138). Plants were maintained in hydroponic conditions with Hoagland’s solution and treated with 10 µM of Cd, renewed every 5 d. The transcription levels of heavy metal transporter genes (PaHMA2, PaNRAMP1.3, PaNRAMP2, PaNRAMP3.1, PaNRAMP3.2, PaABCC9, and PaABCC13) were analyzed at 1, 7, and 60 d of treatment. Cd application did not induce visible toxicity symptoms in wt and aqua1 plants even after 2 months of treatment confirming the high tolerance of this poplar species to Cd. Most of the analyzed genes showed in wt plants a quick response in transcription at 1 d of treatment and an adaptation at 60 d. On the contrary, a lower transcriptional response was observed in aqua1 plants in concomitance with a higher Cd concentration in medial leaves. Moreover, PaHMA2 showed at 1 d an opposite trend within organs since it was up-regulated in root and stem of wt plants and in leaves of aqua1 plants. In summary, aqua1 overexpression in poplar improved Cd translocation suggesting a lower Cd sensitivity of aqua1 plants. This different response might be due to a different transcription of PaNRAMP3 genes that were more transcribed in wt line because of the importance of this gene in Cd compartmentalization.


2021 ◽  
Vol 22 (24) ◽  
pp. 13583
Author(s):  
Siyu Qiao ◽  
Ye Tao ◽  
Qinghua Shan ◽  
Jingang Wang ◽  
Tuanyao Chai ◽  
...  

Heavy metals negatively affect soil quality and crop growth. In this study, we compared the tolerance of six ryegrass cultivars to cobalt (Co2+), lead (Pb2+), and nickel (Ni2+) stresses by analyzing their physiological indexes and transcript levels of genes encoding metal transporters. Compared with the other cultivars, the cultivar Lm1 showed higher germination rates and better growth under Co2+, Pb2+, or Ni2+ treatments. After 48 h of Co2+ treatment, the total antioxidant capacity of all six ryegrass cultivars was significantly increased, especially that of Lm1. In contrast, under Pb2+ stress, total antioxidant capacity of five cultivars was significantly decreased, but that of Lm1 was unaffected at 24 h. Staining with Evans blue dye showed that the roots of Lm1 were less injured than were roots of the other five ryegrass cultivars by Co2+, Pb2+, and Ni2+. Lm1 translocated and accumulated lesser Co2+, Pb2+, and Ni2+ than other cultivars. In Lm1, genes encoding heavy metal transporters were differentially expressed between the shoots and roots in response to Co2+, Pb2+, and Ni2+. The aim of these researches could help find potential resource for phytoremediation of heavy metal contamination soil. The identified genes related to resistance will be useful targets for molecular breeding.


Genes ◽  
2020 ◽  
Vol 11 (11) ◽  
pp. 1269
Author(s):  
Guandi He ◽  
Lijun Qin ◽  
Weijun Tian ◽  
Lulu Meng ◽  
Tengbing He ◽  
...  

Plants have evolved a number of defense and adaptation responses to protect themselves against challenging environmental stresses. Genes containing a heavy metal associated (HMA) domain are required for the spatiotemporal transportation of metal ions that bind with various enzymes and co-factors within the cell. To uncover the underlying mechanisms mediated by StHMA genes, we identified 36 gene members in the StHMA family and divided them into six subfamilies by phylogenetic analysis. The StHMAs had high collinearity and were segmentally duplicated. Structurally, most StHMAs had one HMA domain, StHIPPc and StRNA1 subfamilies had two, and 13 StHMAs may be genetically variable. The StHMA gene structures and motifs varied considerably among the various classifications, this suggests the StHMA family is diverse in genetic functions. The promoter analysis showed that the StHMAs had six main cis-acting elements with abiotic stress. An expression pattern analysis revealed that the StHMAs were expressed tissue specifically, and a variety of abiotic stresses may induce the expression of StHMA family genes. The HMA transporter family may be regulated and expressed by a series of complex signal networks under abiotic stress. The results of this study may help to establish a theoretical foundation for further research investigating the functions of HMA genes in Solanum tuberosum to elucidate their regulatory role in the mechanism governing the response of plants to abiotic stress.


2011 ◽  
Vol 5 ◽  
pp. BBI.S6206 ◽  
Author(s):  
E. Ashrafi ◽  
A. Alemzadeh ◽  
M. Ebrahimi ◽  
E. Ebrahimie ◽  
N. Dadkhodaei ◽  
...  

Phytoremediation refers to the use of plants for extraction and detoxification of pollutants, providing a new and powerful weapon against a polluted environment. In some plants, such as Thlaspi spp, heavy metal ATPases are involved in overall metal ion homeostasis and hyperaccumulation. P1B-ATPases pump a wide range of cations, especially heavy metals, across membranes against their electrochemical gradients. Determination of the protein characteristics of P1B-ATPases in hyperaccumulator plants provides a new opportuntity for engineering of phytoremediating plants. In this study, using diverse weighting and modeling approaches, 2644 protein characteristics of primary, secondary, and tertiary structures of P1B-ATPases in hyperaccumulator and nonhyperaccumulator plants were extracted and compared to identify differences between proteins in hyperaccumulator and nonhyperaccumulator pumps. Although the protein characteristics were variable in their weighting, tree and rule induction models; glycine count, frequency of glutamine-valine, and valine-phenylalanine count were the most important attributes highlighted by 10, five, and four models, respectively. In addition, a precise model was built to discriminate P1B-ATPases in different organisms based on their structural protein features. Moreover, reliable models for prediction of the hyperaccumulating activity of unknown P1B-ATPase pumps were developed. Uncovering important structural features of hyperaccumulator pumps in this study has provided the knowledge required for future modification and engineering of these pumps by techniques such as site-directed mutagenesis.


2004 ◽  
Vol 16 (5) ◽  
pp. 1327-1339 ◽  
Author(s):  
Dawar Hussain ◽  
Michael J. Haydon ◽  
Yuwen Wang ◽  
Edwin Wong ◽  
Sarah M. Sherson ◽  
...  

2021 ◽  
Vol 22 (14) ◽  
pp. 7343
Author(s):  
Erika Sabella ◽  
Andrea Luvisi ◽  
Alessandra Genga ◽  
Luigi De Bellis ◽  
Alessio Aprile

Cadmium is a heavy metal that can be easily accumulated in durum wheat kernels and enter the human food chain. Two near-isogenic lines (NILs) with contrasting cadmium accumulation in grains, High-Cd or Low-Cd (H-Cd NIL and L-Cd NIL, respectively), were used to understand the Cd accumulation and transport mechanisms in durum wheat roots. Plants were cultivated in hydroponic solution, and cadmium concentrations in roots, shoots and grains were quantified. To evaluate the molecular mechanism activated in the two NILs, the transcriptomes of roots were analyzed. The observed response is complex and involves many genes and molecular mechanisms. We found that the gene sequences of two basic helix–loop–helix (bHLH) transcription factors (bHLH29 and bHLH38) differ between the two genotypes. In addition, the transporter Heavy Metal Tolerance 1 (HMT-1) is expressed only in the low-Cd genotype and many peroxidase genes are up-regulated only in the L-Cd NIL, suggesting ROS scavenging and root lignification as active responses to cadmium presence. Finally, we hypothesize that some aquaporins could enhance the Cd translocation from roots to shoots. The response to cadmium in durum wheat is therefore extremely complex and involves transcription factors, chelators, heavy metal transporters, peroxidases and aquaporins. All these new findings could help to elucidate the cadmium tolerance in wheat and address future breeding programs.


Sign in / Sign up

Export Citation Format

Share Document