Determination of sample surface topography using electron back-scatter diffraction patterns

2016 ◽  
Vol 120 ◽  
pp. 23-26 ◽  
Author(s):  
M. Chapman ◽  
P.G. Callahan ◽  
M. De Graef
Author(s):  
D. J. Dingley

The technique of electron back scatter diffraction, EBSD, is well established for measurement of crystal orientation in bulk polycrystalline samples. Analytical procedures for determining crystal phase from them have also been established. In addition several papers have been published describing the application of the method for strain measurement. In these latter studies the EBSPs were recorded on photographic film and all measurements made after digitising the patterns and transferring the data to a SEMPER image processing package. Strain measurement was based on determination of the diffuseness of the diffraction pattern. In the present studies analysis was carried out on digitised television images of the diffraction patterns imaged live on a phosphor screen.EBSPs were obtained in a JEOL 6400 SEM fitted with a tungsten filament. The patterns were imaged on a P20/P40 phosphor directly coupled through a coherent fibre optic bundle to a SIT low light level television camera with 700 line resolution.


Author(s):  
P. E. Batson ◽  
C. H. Chen ◽  
J. Silcox

We wish to report in this paper measurements of the inelastic scattering component due to the collective excitations (plasmons) and single particlehole excitations of the valence electrons in Al. Such scattering contributes to the diffuse electronic scattering seen in electron diffraction patterns and has recently been considered of significance in weak-beam images (see Gai and Howie) . A major problem in the determination of such scattering is the proper correction for multiple scattering. We outline here a procedure which we believe suitably deals with such problems and report the observed single scattering spectrum.In principle, one can use the procedure of Misell and Jones—suitably generalized to three dimensions (qx, qy and #x2206;E)--to derive single scattering profiles. However, such a computation becomes prohibitively large if applied in a brute force fashion since the quasi-elastic scattering (and associated multiple electronic scattering) extends to much larger angles than the multiple electronic scattering on its own.


Author(s):  
Fumio Watari ◽  
J. M. Cowley

STEM coupled with the optical system was used for the investigation of the early oxidation on the surface of Cr. Cr thin films (30 – 1000Å) were prepared by evaporation onto the polished or air-cleaved NaCl substrates at room temperature and 45°C in a vacuum of 10−6 Torr with an evaporation speed 0.3Å/sec. Rather thick specimens (200 – 1000Å) with various preferred orientations were used for the investigation of the oxidation at moderately high temperature (600 − 1100°C). Selected area diffraction patterns in these specimens are usually very much complicated by the existence of the different kinds of oxides and their multiple twinning. The determination of the epitaxial orientation relationship of the oxides formed on the Cr surface was made possible by intensive use of the optical system and microdiffraction techniques. Prior to the formation of the known rhombohedral Cr2O3, a thin spinel oxide, probably analogous to γ -Al203 or γ -Fe203, was formed. Fig. 1a shows the distinct epitaxial growth of the spinel (001) as well as the rhombohedral (125) on the well-oriented Cr(001) surface. In the case of the Cr specimen with the (001) preferred orientation (Fig. 1b), the rings explainable by spinel structure appeared as well as the well defined epitaxial spots of the spinel (001). The microdif fraction from 20A areas (Fig. 2a) clearly shows the same pattern as Fig. Ia with the weaker oxide spots among the more intense Cr spots, indicating that the thickness of the oxide is much less than that of Cr. The rhombohedral Cr2O3 was nucleated preferably at the Cr(011) sites provided by the polycrystalline nature of the present specimens with the relation Cr2O3 (001)//Cr(011), and by further oxidation it grew into full coverage of the rest of the Cr surface with the orientation determined by the initial nucleation.


Crystals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 129
Author(s):  
Liana Vella-Zarb ◽  
Ulrich Baisch

There is much interest and focus on solid forms of famciclovir. However, in spite of the abundance of reported differences in oral bioavailability, compressibility, and other physical–chemical properties of the various crystal forms of this drug, very little precise structural analysis is available in the literature to date. The form used in the commercial formulation is the anhydrous form I. Patents and patent applications report three different anhydrous crystalline forms on the basis of unindexed powder diffraction patterns. Single-crystal and variable-temperature X-ray diffraction experiments using the commercially available anhydrous form of famciclovir were carried out and led not only to the crystal structure determination of the anhydrous form I, but also to discovery of a new crystal form of anhydrous famciclovir from powder data.


2004 ◽  
Vol 10 (4) ◽  
pp. 207-214 ◽  
Author(s):  
Ute Jacobi ◽  
Mai Chen ◽  
Gottfried Frankowski ◽  
Ronald Sinkgraven ◽  
Martina Hund ◽  
...  

1992 ◽  
Vol 46 (9) ◽  
pp. 1382-1387 ◽  
Author(s):  
J. A. Aguilera ◽  
C. Aragón ◽  
J. Campos

Laser-induced breakdown spectroscopy has been used to determine carbon content in steel. The plasma was formed by focusing a Nd:YAG laser on the sample surface. With the use of time-resolved spectroscopy and generation of the plasma in nitrogen atmosphere, a precision of 1.6% and a detection limit of 65 ppm have been obtained. These values are similar to those of other accurate conventional techniques. Matrix effects for the studied steels are reduced to a small slope difference between the calibration curves for stainless and nonstainless steels.


2011 ◽  
Vol 44 (1) ◽  
pp. 177-183 ◽  
Author(s):  
Catherine Dejoie ◽  
Martin Kunz ◽  
Nobumichi Tamura ◽  
Colin Bousige ◽  
Kai Chen ◽  
...  

Although the spectrum originating from a superconducting bending magnet is quasi-continuous, it shows important intensity variations through its spectral range. A method to determine the incident energy-dependent flux variation based on the comparison between observed intensities and the calculated intensities of a well known structure (calcite) is presented here. It is found that the measured flux is highly sensitive to the use of correct Debye–Waller factors for the atoms of the standard crystal. By using the measured flux curve, it was possible to unambiguously index the Laue diffraction pattern of a trigonal crystal structure in its hexagonal setting. This is a crucial but difficult first step for the determination of strain and stress in materials with this symmetry, such as quartz, Mg, Ti, Znetc.


1997 ◽  
Vol 20 (4) ◽  
pp. 307-316 ◽  
Author(s):  
Juhani Kakkuri ◽  
Markku Poutanen

Sign in / Sign up

Export Citation Format

Share Document