Immense impact from small particles: Review on stability and thermophysical properties of nanofluids

2021 ◽  
Vol 48 ◽  
pp. 101635
Author(s):  
A.G.N. Sofiah ◽  
M. Samykano ◽  
A.K. Pandey ◽  
K. Kadirgama ◽  
Kamal Sharma ◽  
...  
Author(s):  
L. Andrew Staehelin

Freeze-etched membranes usually appear as relatively smooth surfaces covered with numerous small particles and a few small holes (Fig. 1). In 1966 Branton (1“) suggested that these surfaces represent split inner mem¬brane faces and not true external membrane surfaces. His theory has now gained wide acceptance partly due to new information obtained from double replicas of freeze-cleaved specimens (2,3) and from freeze-etch experi¬ments with surface labeled membranes (4). While theses studies have fur¬ther substantiated the basic idea of membrane splitting and have shown clearly which membrane faces are complementary to each other, they have left the question open, why the replicated membrane faces usually exhibit con¬siderably fewer holes than particles. According to Branton's theory the number of holes should on the average equal the number of particles. The absence of these holes can be explained in either of two ways: a) it is possible that no holes are formed during the cleaving process e.g. due to plastic deformation (5); b) holes may arise during the cleaving process but remain undetected because of inadequate replication and microscope techniques.


Author(s):  
W. Krakow ◽  
W. C. Nixon

The scanning electron microscope (SEM) can be run at television scanning rates and used with a video tape recorder to observe dynamic specimen changes. With a conventional tungsten source, a low noise TV image is obtained with a field of view sufficient to cover the area of the specimen to be recorded. Contrast and resolution considerations have been elucidated and many changing specimens have been studied at TV rates.To extend the work on measuring the magnitude of charge and field distributions of small particles in the SEM, we have investigated their motion and electrostatic interaction at TV rates. Fig. 1 shows a time sequence of polystyrene spheres on a conducting grating surface inclined to the microscope axis. In (la) there are four particles present in the field of view, while in (lb) a fifth particle has moved into view.


Author(s):  
George C. Ruben

The formation of shadows behind small particles has been thought to be a geometric process (GP) where the metal cap build up on the particle creates a shadow width the same size as or larger than the particle. This GP cannot explain why gold particle shadow widths are generally larger than the gold particle and may have no appreciable metal cap build up (fig. 1). Ruben and Telford have suggested that particle shadow widths are formed by the width dependent deflection of shadow metal (SM) lateral to and infront of the particle. The trajectory of the deflected SM is determined by the incoming shadow angle (45°). Since there can be up to 1.4 times (at 45°) more SM directly striking the particle than the film surface, a ridge of metal nuclei lateral to and infront of the particle can be formed. This ridge in turn can prevent some SM from directly landing in the metal free shadow area. However, the SM that does land in the shadow area (not blocked by the particle or its ridge) does not stick and apparently surface migrates into the SM film behind the particle.


Author(s):  
Daniel UGARTE

Small particles exhibit chemical and physical behaviors substantially different from bulk materials. This is due to the fact that boundary conditions can induce specific constraints on the observed properties. As an example, energy loss experiments carried out in an analytical electron microscope, constitute a powerful technique to investigate the excitation of collective surface modes (plasmons), which are modified in a limited size medium. In this work a STEM VG HB501 has been used to study the low energy loss spectrum (1-40 eV) of silicon spherical particles [1], and the spatial localization of the different modes has been analyzed through digitally acquired energy filtered images. This material and its oxides have been extensively studied and are very well characterized, because of their applications in microelectronics. These particles are thus ideal objects to test the validity of theories developed up to now.Typical EELS spectra in the low loss region are shown in fig. 2 and energy filtered images for the main spectral features in fig. 3.


Author(s):  
H.-J. Ou

The understanding of the interactions between the small metallic particles and ceramic surfaces has been studied by many catalyst scientists. We had developed Scanning Reflection Electron Microscopy technique to study surface structure of MgO hulk cleaved surface and the interaction with the small particle of metals. Resolutions of 10Å has shown the periodic array of surface atomic steps on MgO. The SREM observation of the interaction between the metallic particles and the surface may provide a new perspective on such processes.


Author(s):  
J. S. Hanker ◽  
B. L. Giammara

Nonresorbable sintered ceramic hydroxylapatite (HA) is widely employed for filling defects in jaw bone. The small particles used for alveolar ridge augmentation in edentulous patients or for infrabony defects due to periodontal disease tend to scatter when implanted using water or saline as the vehicle. Larger blocks of this material used for filling sockets after tooth extraction don't fit well. Studies in our laboratory where we compared bovine serum albumin, collagen and plaster of Paris as binders to prevent particle scatter during implantation suggested that plaster was most useful for this purpose. In addition to preventing scatter of the particles, plaster enables the formation of implants of any size and.shape either prior to or during surgery. Studies with the PATS reaction have indicated that plaster acts as a scaffold for the incorporation of HA particles into bone in areas where the implant contacts either host bone or periosteum. The shape and integrity of the implant is maintained by the plaster component until it is replaced over a period of days by fibrovascular tissue.


Author(s):  
E. Silva ◽  
R. Scozia

The purpose in obtaining zone axis pattern map (zap map) from a given material is to provide a quick and reliable tool to identify cristaline phases, and crystallographic directions, even in small particles. Bend contours patterns and Kossel lines patterns maps from Zr single crystal in the [0001] direction have been presented previously. In the present communication convergent beam electron diffraction (CBED) zap map of Zr will be shown. CBED patterns were obtained using a Philips microscope model EM300, which was set up to carry out this technique. Convergent objective upper pole piece for STEM and some electronic modifications in the lens circuits were required, furthermore the microscope was carefully cleaned and it was operated at a vacuum eminently good.CBED patterns in the Zr zap map consist of zero layer disks, showing fine details within them which correspond to intersecting set of higher order Laue zone (HOLZ) deficiency lines.


Author(s):  
A. Redjaïmia ◽  
J.P. Morniroli ◽  
G. Metauer ◽  
M. Gantois

2D and especially 3D symmetry information required to determine the crystal structure of four intermetallic phases present as small particles (average size in the range 100-500nm) in a Fe.22Cr.5Ni.3Mo.0.03C duplex stainless steel is not present in most Convergent Beam Electron Diffraction (CBED) patterns. Nevertheless it is possible to deduce many crystal features and to identify unambiguously these four phases by means of microdiffraction patterns obtained with a nearly parallel beam focused on a very small area (50-100nm).From examinations of the whole pattern reduced (RS) and full (FS) symmetries the 7 crystal systems and the 11 Laue classes are distinguished without ambiguity (1). By considering the shifts and the periodicity differences between the ZOLZ and FOLZ reflection nets on specific Zone Axis Patterns (ZAP) which depend on the crystal system, the centering type of the cell and the glide planes are simultaneously identified (2). This identification is easily done by comparisons with the corresponding simulated diffraction patterns.


Author(s):  
M. José-Yacamán

Electron microscopy is a fundamental tool in materials characterization. In the case of nanostructured materials we are looking for features with a size in the nanometer range. Therefore often the conventional TEM techniques are not enough for characterization of nanophases. High Resolution Electron Microscopy (HREM), is a key technique in order to characterize those materials with a resolution of ~ 1.7A. High resolution studies of metallic nanostructured materials has been also reported in the literature. It is concluded that boundaries in nanophase materials are similar in structure to the regular grain boundaries. That work therefore did not confirm the early hipothesis on the field that grain boundaries in nanostructured materials have a special behavior. We will show in this paper that by a combination of HREM image processing, and image calculations, it is possible to prove that small particles and coalesced grains have a significant surface roughness, as well as large internal strain.


Author(s):  
L. D. Marks ◽  
J. P. Zhang

A not uncommon question in electron microscopy is what happens to the momentum transferred by the electron beam to a crystal. If the beam passes through a crystal and is preferentially diffracted in one direction, is the momentum ’lost’ by the beam transferred to the crystal? Newton’s third law implies that this must be the case. Some experimental observations also indicate that this is the case; for instance, with small particles if the particles are supported on the top surface of a film they often do not line up on the zone axis, but if they are on the bottom they do. However, if momentum is transferred to the crystal, then surely we are dealing with inelastic scattering, not elastic scattering and is not the scattering probability different? In addition, normally we consider inelastic scatter as incoherent, and therefore the part of the electron wave that is inelastically scattered will not coherently interfere with the part of the wave that is scattered; but, electron holography and high resolution electron microscopy work so the wave passing through a specimen must be coherent with the wave that does not pass through the specimen.


Sign in / Sign up

Export Citation Format

Share Document