scholarly journals Desert soil fungi isolated from Saudi Arabia: cultivable fungal community and biochemical production

Author(s):  
Fuad Ameen ◽  
Saleh AlNAdhari ◽  
Mohamed A. Yassin ◽  
Ahmed Al-Sabri ◽  
Abobakr Almansob ◽  
...  
2020 ◽  
Author(s):  
Chunhui Ma ◽  
Jiangjiao Qi ◽  
Xue Yu ◽  
Lihe Su ◽  
Tingting He ◽  
...  

Abstract Alfalfa (Medicago sativa L.) is an important forage legume in farming and animal husbandry systems. In this study, MiSeq high-throughput sequencing was applied to assess the relationship between bacterial and fungal community structures and alfalfa growth characteristics and soil physical and chemical properties induced by different cultivars alfalfa (Victoria, Kangsai, Aohan) in the grey desert soil. The results showed that the diversity of bacterial and fungal in Victoria was higher, and the bacterial diversity was significantly lower for alfalfa with Aohan than for the others, and the fungal diversity was lower for alfalfa with Kangsai than for the others. Heatmap showed that total nitrogen, fresh weight, pH and organic have significantly affect fungal community structure, whereas pH and organic carbon also significant effects on bacterial community structure. LefSe analysis showed that the growth adaptability of introduced alfalfa is mainly related to fungal and bacterial species, and the beneficial microorganisms with significant differences and relative high abundance are significantly enriched in Victoria. Pathogens with high relative abundance are mainly concentrated in Aohan alfalfa soil. Based on our findings, Victoria is the high-yield alfalfa suitable for planting in gray desert soil, while planting Kangsai and Aohan alfalfa needs probiotic for adjuvant.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xianqing Zheng ◽  
Ke Song ◽  
Shuangxi Li ◽  
Hanlin Zhang ◽  
Naling Bai ◽  
...  

AbstractThe diversity and community structure of soil fungi play an important role in crop production and ecosystem balance, especially in paddy-upland vegetable field systems. High-throughput sequencing was used to study changes in the soil fungal community structure and function in paddy-upland vegetable field systems. The results showed that compared with traditional planting, the diversity and community structure of soil fungi were changed by the combination of flooding and drought, the Shannon index increased by 11.07%, and the proportion of the dominant species, Mortierella, decreased by 22.74%. Soil available nitrogen, total phosphorus, available phosphorus, total nitrogen and organic matter played a leading role in the initial stage of the experiment, while the dominant factor changed to total potassium 3 years later and then to soil pH and water content 6 years later. FUNGuild analysis showed that the proportion of three independent trophic modes of soil fungi were increased by the combined flooded-drought model, and there were multiple interaction factors, For example, nutrient supply, pH and planting pattern. This study showed that soil fertility, crop yield and economic benefits were better than the traditional model after three years of planting and breeding. The longer the time, the better the effect.


Chemosphere ◽  
1974 ◽  
Vol 3 (2) ◽  
pp. 59-64 ◽  
Author(s):  
J.E. Hardcastle ◽  
W.H. Fuller

2020 ◽  
Author(s):  
Li Ji ◽  
Yan Zhang ◽  
Yuchun Yang ◽  
Lixue Yang

AbstractThe biogeography of soil fungi has attracted much attention in recent years; however, studies on this topic have mainly focused on mid- and low-altitude regions. The seasonal patterns of soil fungal community structure and diversity along altitudinal gradients under the unique climatic conditions at high latitudes remain unclear, which limits our insight into soil microbial interactions and the mechanisms of community assembly. In this study, Illumina MiSeq sequencing was used to investigate the spatiotemporal changes in soil fungal communities along an altitudinal gradient (from 750 m to 1420 m) on Oakley Mountain in the northern Greater Khingan Mountains. Altitude had significant impacts on the relative abundances of the dominant phyla and classes of soil fungi, and the interaction of altitude and season significantly affected the relative abundances of Ascomycota and Basidiomycota. The number of soil fungal taxa and Faith’s phylogenetic diversity (PD) index tended to monotonically decline with increasing elevation. Soil moisture (SM), soil temperature (ST) and pH were the main factors affecting fungal community structure in May, July and September, respectively. The soil dissolved organic carbon (DOC) content significantly shaped the soil fungal community composition along the altitudinal gradient throughout the growing season. Compared to that in May and July, the soil fungal network in September had more nodes and links, a higher average degree and a higher average clustering coefficient. The nine module nodes in the co-occurrence network were all Ascomycota taxa, and the identities of the keystone taxa of soil fungi in the network showed obvious seasonality. Our results demonstrated that altitude has stronger effects than season on soil fungal community structure and diversity at high latitudes. In addition, the co-occurrence network of soil fungi exhibited obvious seasonal succession, which indicated that the keystone taxa of soil fungi exhibit niche differentiation among seasons.


Agriculture ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1280
Author(s):  
Yongmei Liu ◽  
Fan Zhao ◽  
Lei Wang ◽  
Wei He ◽  
Jianhong Liu ◽  
...  

Alpine meadow degradation causes a notable decrease in palatable grasses and an increase in forbs and toxic plants in recent decades. Stellera chamaejasme is one of the most serious toxic weeds, which exerts an increasing threat on alpine meadow in Qinghai–Tibetan Plateau. Combined DNA sequencing with geostatistics was applied to analyze a typical degraded meadow invaded by S. chamaejasme in Qinghai Province, China. The study aimed to determine the spatial variation of soil fungi and its interrelationship with the plant–soil environment. Alpha diversity and relative abundance of fungal phyla and classes showed moderate or strong spatial dependency and were structured in patches of 19–318 m, and taxonomic composition exhibited much higher spatial variability than alpha diversity. Compared to plant cover, the matching of patch size showed a closer spatial link between soil properties and fungal community. Community coverage, SOM, TN, TP, and TK positively correlated to fungal diversity and taxonomic composition; no direct correlation was found between S. chamaejasme coverage and fungal community. The result suggested significant but weak association between plant–soil properties and soil fungal community at local scale. Patchy pattern of S. chamaejasme may disturb spatial variations of soil properties and fungal community, since S. chamaejasme in higher coverage corresponded to lower TK content, which contributed to a decrease in fungal diversity indirectly.


2021 ◽  
Vol 13 (19) ◽  
pp. 10688
Author(s):  
Taimoor Hassan Farooq ◽  
Uttam Kumar ◽  
Awais Shakoor ◽  
Gadah Albasher ◽  
Saad Alkahtani ◽  
...  

Soil microorganisms provide valuable ecosystem services, such as nutrient cycling, soil remediation, and biotic and abiotic stress resistance. There is increasing interest in exploring total belowground biodiversity across ecological scales to understand better how different ecological aspects, such as stand density, soil properties, soil depth, and plant growth parameters, influence belowground communities. In various environments, microbial components of belowground communities, such as soil fungi, respond differently to soil features; however, little is known about their response to standing density and vertical soil profiles in a Chinese fir monoculture plantation. This research examined the assemblage of soil fungal communities in different density stands (high, intermediate, and low) and soil depth profiles (0–20 cm and 20–40 cm). This research also looked into the relationship between soil fungi and tree canopy characteristics (mean tilt angle of the leaf (MTA), leaf area index (LAI), and canopy openness index (DIFN)), and general growth parameters, such as diameter, height, and biomass. The results showed that low-density stand soil had higher fungal alpha diversity than intermediate- and high-density stand soils. Ascomycota, Basidiomycota, Mucromycota, and Mortierellomycota were the most common phyla of the soil fungal communities, in that order. Saitozyma, Penicillium, Umbelopsis, and Talaromyces were the most abundant fungal genera. Stand density composition was the dominant factor in changing fungal community structure compared to soil properties and soil depth profiles. The most significant soil elements in soil fungal community alterations were macronutrients. In addition, the canopy openness index and fungal community structure have a positive association in the low-density stand. Soil biota is a nutrient cycling driver that can promote better plant growth in forest ecosystems by supporting nutrient cycling. Hence, this research will be critical in understanding soil fungal dynamics, improving stand growth and productivity, and improving soil quality in intensively managed Chinese fir plantations.


Forests ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 92
Author(s):  
Yanxin Long ◽  
Xiaodong Yang ◽  
Yuee Cao ◽  
Guanghui Lv ◽  
Yan Li ◽  
...  

Research Highlights: 1. Soil fungi have a higher influence on seedling density compared to soil environmental factors; 2. Host-specific pathogens and beneficial fungi affect seeding density via different influencing mechanisms. Background and Objectives: The growth and development of seedlings are the key processes that affect forest regeneration and maintain community dynamics. However, the influencing factors of seedling growth around their adult conspecifics are not clear in arid desert forests. Probing the intrinsic relations among soil fungi, soil environmental factors (pH, water content, salinity, and nutrition), and seedling density will improve our understanding of forest development and provide a theoretical basis for forest management and protection. Materials and Methods: Four experimental plot types, depending on the distance to adult conspecifics, were set in an arid desert forest. Soil environmental factors, the diversity and composition of the soil fungal community, and the seedlings’ density and height were measured in the four experimental plot types, and their mutual relations were analyzed. Results: Seedling density as well as the diversity and composition of the soil fungal community varied significantly among the four plot types (p < 0.05). Soil environmental factors, especially soil salinity, pH, and soil water content, had significant influences on the seedling density and diversity and composition of the soil fungal community. The contribution of soil fungi (72.61%) to the variation in seedling density was much higher than the soil environmental factors (27.39%). The contribution of detrimental fungi to the variation in seedling density was higher than the beneficial fungi. Conclusions: Soil fungi mostly affected the distribution of seedling density in the vicinity of adult conspecifics in an arid desert forest. The distribution of seedling density in the vicinity of adults was mainly influenced by the detrimental fungi, while the adults in the periphery area was mainly influenced by the beneficial fungi.


Sign in / Sign up

Export Citation Format

Share Document