Impact of silicon melt infiltration on the quality of cast crystalline silicon

Solar Energy ◽  
2021 ◽  
Vol 225 ◽  
pp. 569-576
Author(s):  
Qi Lei ◽  
Liang He ◽  
Changxin Tang ◽  
Shilong Liu ◽  
Lang Zhou
2008 ◽  
Vol 1066 ◽  
Author(s):  
Michael Zanoni Burrows ◽  
U. K. Das ◽  
S. Bowden ◽  
S. S. Hegedus ◽  
R. L. Opila ◽  
...  

ABSTRACTThe as-deposited passivation quality of amorphous silicon films on crystalline silicon surfaces is dependent on deposition conditions and resulting hydrogen bonding structure. However the initial surface passivation can be significantly improved by low temperature post-deposition anneal. For example an improvement in effective lifetime from 780 μsec as-deposited to 2080 μsec post-anneal is reported in the present work. This work probes the hydrogen bonding environment using monolayer resolution Brewster angle transmission Fourier transform infrared spectroscopy of 100 Å thick films. It is found that there is significant restructuring at the a-Si:H / c-Si interface upon annealing and a gain of mono-hydride bonding at the c-Si surface is detected. Calculations show an additional 3.56 − 4.50 × 1014 cm−2 mono-hydride bonding at c-Si surface due to annealing. The estimation of the surface hydride oscillator strength in transmission mode is reported for the first time to be 7.2 × 10−18 cm on Si (100) surface and 7.5 × 10−18 cm on Si (111).


Solar Energy ◽  
2003 ◽  
Author(s):  
Tetsuo Munakata ◽  
Satoshi Someya

Conversion efficiency of solar cell is strongly affected by quality of substrate and the quality of substrate is influenced by melt convection if the substrate crystal is grown by melt growth technique. Therefore, melt convection control techniques are important to produce a high quality single crystal. In this paper, we have proposed a high frequency magnetic field applied CZ method and investigated the effect of high frequency magnetic field on silicon melt convection. The result reveals that the high frequency magnetic fields affect the tendency of the melt convection: until certain intensity of the high frequency magnetic field, the melt convection is suppressed and above such intensity of the high frequency magnetic field, the melt convection intensity is enhanced. This result indicates that the melt convection can be controlled by the high frequency magnetic field and the high quality silicon single crystals will be grown by this method.


2006 ◽  
Vol 508 ◽  
pp. 603-608 ◽  
Author(s):  
Jožef Medved ◽  
Primož Mrvar

Multi-crystalline silicon ingot casting using directional crystallisation is the most costeffective technique for the production of Si for the photovoltaic industry. Non-uniform cooling conditions and a non-planarity of the solidification front result, however, in the build-up of stresses and viscoplastic deformation. Known defects, such as dislocations and residual stresses, can then occur and reduce the quality of the produced material. Numerical simulation, combined with experimental investigation, is therefore a key tool for understanding the crystallisation process, and optimizing it. The purpose of the present work is to present an experimental furnace for directional crystallisation of silicon, and its analysis by means of numerical simulation. The complete casting procedure, i.e., including both the crystallisation phase and the subsequent ingot cooling, is simulated. The thermal field has been computed by a CFD tool, taking into account important phenomena such as radiation and convection in the melt. The transient thermal field is used as input for a thermo-elasto-viscoplastic model for the analysis of stress build-up and viscoplastic deformation during the process. Numerical analysis is employed to identify process phases where further optimisation is needed in order to reduce generated defects.


2006 ◽  
Vol 950 ◽  
Author(s):  
Camilla Coletti ◽  
Mark J. Jaroszeski ◽  
Andrew M. Hoff ◽  
Stephen E. Saddow

ABSTRACTCrystalline silicon carbide (SiC) has the potential to become an important biomaterial and a versatile interface between the electronic and biological world. In this work, single crystal SiC biocompatibility is investigated by culturing mammalian cells directly on SiC substrates. The cell morphology and the quality of the cell adhesion have been studied using fluorescence microscopy, while MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assays have been performed to quantify cell viability and number. Standard culture-wells and silicon (Si) substrates were used as controls in the final assessment of crystalline SiC biocompatibility.


2006 ◽  
Vol 45 ◽  
pp. 2316-2322 ◽  
Author(s):  
Jens Schmidt ◽  
Matthias Scheiffele ◽  
Alexander Mach ◽  
Franz von Issendorff

Non-oxide SiC ceramics can withstand high temperatures ~1400 °C in severe combustion environments. Therefore such ceramics are interesting candidates for advanced combustion technologies, e.g. sophisticated porous burners. For the fabrication of porous SiSiC ceramics the DLR developed a new technology based on carbon sheets and lamellae. These basic materials can be combined to lightweight 3D C/C stacks. Through the variation of the amplitude and number of lamellae per inch, the open porosity and orientation of the pore channels could be tailored in a wide range. By using the pyrolysis followed by the liquid silicon-melt infiltration process the carbon stack could be directly converted into SiC in one shot. The residual open porosity can easily be filled with pure silicon to obtain 3D SiSiC structures with adequate mechanical strength and sufficient damage tolerance. Best results from durability tests were obtained with structures which are composed of oriented pore channels. Suitable structures should have angles (α) of about α = ± 60° or less. The results from burner rig tests at LSTM with improved components have been very promising, since a lifetime up to 500 hours and 2000 start-ups could be obtained with α = ± 50° as well as with α = ± 60° sample. So far, no significant oxidation or degradation could be observed after 1939 h/10800 start-ups with α = ± 45° sample. These proof tests are ongoing and show that these novel cardboard like structures have a high potential for industrial applications.


2014 ◽  
Vol 9 (1) ◽  
pp. 53-56 ◽  
Author(s):  
H. Meddeb ◽  
Twan Bearda ◽  
Wissem Dimassi ◽  
Yaser Abdulraheem ◽  
Hatem Ezzaouia ◽  
...  

2016 ◽  
Vol 157 ◽  
pp. 154-160 ◽  
Author(s):  
Wanghua Chen ◽  
Valérie Depauw ◽  
Farah Haddad ◽  
Jean-Luc Maurice ◽  
Pere Roca i Cabarrocas

Sign in / Sign up

Export Citation Format

Share Document