The band gap and band offset in ultrathin oxide–semiconductor heterostructures

2010 ◽  
Vol 47 (3) ◽  
pp. 369-376 ◽  
Author(s):  
D. Schmeißer ◽  
K. Henkel ◽  
M. Bergholz ◽  
M. Tallarida
Author(s):  
J.M. Bonar ◽  
R. Hull ◽  
R. Malik ◽  
R. Ryan ◽  
J.F. Walker

In this study we have examined a series of strained heteropeitaxial GaAs/InGaAs/GaAs and InGaAs/GaAs structures, both on (001) GaAs substrates. These heterostructures are potentially very interesting from a device standpoint because of improved band gap properties (InAs has a much smaller band gap than GaAs so there is a large band offset at the InGaAs/GaAs interface), and because of the much higher mobility of InAs. However, there is a 7.2% lattice mismatch between InAs and GaAs, so an InxGa1-xAs layer in a GaAs structure with even relatively low x will have a large amount of strain, and misfit dislocations are expected to form above some critical thickness. We attempt here to correlate the effect of misfit dislocations on the electronic properties of this material.The samples we examined consisted of 200Å InxGa1-xAs layered in a hetero-junction bipolar transistor (HBT) structure (InxGa1-xAs on top of a (001) GaAs buffer, followed by more GaAs, then a layer of AlGaAs and a GaAs cap), and a series consisting of a 200Å layer of InxGa1-xAs on a (001) GaAs substrate.


2019 ◽  
Vol 7 (16) ◽  
pp. 4817-4821 ◽  
Author(s):  
U. Sandhya Shenoy ◽  
D. Krishna Bhat

Resonance states due to Bi and In co-doping, band gap enlargement, and a reduced valence-band offset in SnTe lead to a record high room-temperature ZT.


2018 ◽  
Vol 4 (5) ◽  
pp. 542-545 ◽  
Author(s):  
R. Shabu ◽  
A. Moses Ezhil Raj

As major attention has been paid to transition metal oxide semiconductor suitable for solar cell, photo detector and gas sensor, present study embark on the structural, optical and electrical characterization of Ag doped CuO thin films prepared using chemical spray pyrolysis technique at the constant substrate temperature of 350 �C. For Ag doping, various concentrations of silver acetate (0.5-3.0 wt.%) was used in the sprayed precursor solution. Confirmed monoclinic lattice shows the tenorite phase formation of CuO in the pure and Ag doped films. The optical band gap of the films was in the range of 2.4 -3.4 eV. A minimum resistivity of 0.0017x103 ohmcm was achieved in the 0.5 wt.% Ag doped film, and its optical band gap was 2.74 eV.


2020 ◽  
Vol 30 (13) ◽  
pp. 1910405 ◽  
Author(s):  
Iryna Polishchuk ◽  
Nuphar Bianco‐Stein ◽  
Arad Lang ◽  
Mariam Kurashvili ◽  
Maytal Caspary Toroker ◽  
...  

2010 ◽  
Vol 22 (14) ◽  
pp. n/a-n/a ◽  
Author(s):  
Masaki Nakano ◽  
Atsushi Tsukazaki ◽  
Akira Ohtomo ◽  
Kazunori Ueno ◽  
Shunsuke Akasaka ◽  
...  

2009 ◽  
Vol 615-617 ◽  
pp. 557-560 ◽  
Author(s):  
Takuma Suzuki ◽  
Junji Senzaki ◽  
Tetsuo Hatakeyama ◽  
Kenji Fukuda ◽  
Takashi Shinohe ◽  
...  

The oxide reliability of metal-oxide-semiconductor (MOS) capacitors on 4H-SiC(000-1) carbon face was investigated. The gate oxide was fabricated by using N2O nitridation. The effective conduction band offset (Ec) of MOS structure fabricated by N2O nitridation was increased to 2.2 eV compared with Ec = 1.7 eV for pyrogenic oxidation sample of. Furthermore, significant improvements in the oxide reliability were observed by time-dependent dielectric breakdown (TDDB) measurement. It is suggested that the N2O nitridation as a method of gate oxide fabrication satisfies oxide reliability on 4H-SiC(000-1) carbon face MOSFETs.


Sign in / Sign up

Export Citation Format

Share Document