Deep depletion capacitance–voltage technique for spatial distribution of traps across the substrate in MOS structures

2020 ◽  
Vol 173 ◽  
pp. 107905
Author(s):  
Han Bin Yoo ◽  
Jintae Yu ◽  
Haesung Kim ◽  
Ji Hee Ryu ◽  
Sung-Jin Choi ◽  
...  
2018 ◽  
Vol 924 ◽  
pp. 229-232 ◽  
Author(s):  
Anders Hallén ◽  
Sethu Saveda Suvanam

The radiation hardness of two dielectrics, SiO2and Al2O3, deposited on low doped, n-type 4H-SiC epitaxial layers has been investigated by exposing MOS structures involving these materials to MeV proton irradiation. The samples are examined by capacitance voltage (CV) measurements and, from the flat band voltage shift, it is concluded that positive charge is induced in the exposed structures detectable for fluence above 1×1011cm-2. The positive charge increases with proton fluence, but the SiO2/4H-SiC structures are slightly more sensitive, showing that Al2O3can provide a more radiation hard passivation, or gate dielectric for 4H-SiC devices.


1999 ◽  
Vol 567 ◽  
Author(s):  
L-Å Ragnarsson ◽  
E. Aderstedt ◽  
P. Lundgren

ABSTRACTA comparative capacitance voltage method is used to investigate the equivalent thickness reduction during post metallization annealing of thermally grown ultrathin (∼15-27 Å) oxides. It is found that a double layered dielectric consisting of a thin Al2O3—SiO2 sandwich is appropriate to describe both the increased capacitance and the nearly unaltered current after anneal. It is further shown that the impact of initial thickness and method of growth — in a conventional furnace or by rapid thermal oxidation — on the equivalent thickness reduction is negligible.


2000 ◽  
Vol 338-342 ◽  
pp. 1117-1120 ◽  
Author(s):  
Einar Ö. Sveinbjörnsson ◽  
M. Ahnoff ◽  
H.Ö. Ólafsson

2007 ◽  
Vol 556-557 ◽  
pp. 647-650 ◽  
Author(s):  
Jeong Hyun Moon ◽  
Dong Hwan Kim ◽  
Ho Keun Song ◽  
Jeong Hyuk Yim ◽  
Wook Bahng ◽  
...  

We have fabricated advanced metal-oxide-semiconductor (MOS) capacitors with ultra thin (5 nm) remote-PECVD SixNy dielectric layers and investigated electrical properties of nitrided SiO2/4H-SiC interface after oxidizing the SixNy in dry oxygen at 1150 °C for 30, 60, 90 min. Improvements of electrical properties have been revealed in capacitance-voltage (C-V) and current density-electrical field (J-E) measurements in comparison with dry oxide. The improvements of SiC MOS capacitors formed by oxidizing the pre-deposited SixNy have been explained in this paper.


2014 ◽  
Vol 778-780 ◽  
pp. 595-598 ◽  
Author(s):  
Christian T. Banzhaf ◽  
Michael Grieb ◽  
Achim Trautmann ◽  
Anton J. Bauer ◽  
Lothar Frey

This paper focuses on the evaluation of subsequent process steps (post-trench processes, PTPs) after 4H silicon carbide (4H-SiC) trench etching with respect to the electrical performance of trenched gate metal oxide semiconductor field effect transistors (Trench-MOSFETs). Two different types of PTP were applied after 4H-SiC trench formation, a high temperature post-trench anneal (PTA) [1] and a sacrificial oxidation (SacOx) [2]. We found significantly improved electrical properties of Planar-MOS structures using a SacOx as PTP, prior to gate oxide deposition. Besides excellent quasi-static capacitance-voltage (QSCV) behavior even at T = 250 °C, charge-to-breakdown (QBD) results up to 8.8 C/cm2 at T = 200 °C are shown to be similar on trenched surfaces as well as on untrenched surfaces of SacOx-treated Planar-MOS structures. Moreover, dielectric breakdown field strengths up to 12 MV/cm have been measured on Planar-MOS structures. However, thick bottom oxide Trench-MOS structures indicate best dielectric breakdown field strengths of 9.5 MV/cm when using a trench shape rounding PTA as the PTP.


1990 ◽  
Vol 182 ◽  
Author(s):  
J. Lin ◽  
S. Batra ◽  
K. Park ◽  
J. Lee ◽  
S. Banerjee ◽  
...  

AbstractThis paper discusses the effects of dopant segregation and electron trapping on the capacitance-voltage characteristics of arsenic-implanted polysilicon and amorphous Si gate MOS structures fabricated with and without a TiSi2 layer. The effects of gate bias, annealing temperature, silicide formation and polysilicon grain microstructure on the C-V characteristics have also been studied. The results show that insufficient arsenic redistribution at 800°C, coupled with carrier trapping at polysilicon grain boundaries and dopant segregation in TiSi2 causes depletion effects in the polysilicon gate and in turn, an anomalous capacitance-voltage behavior. The depletion tends to increase the “effective” gate oxide thickness and thereby degrade MOS device performance. Higher temperature anneals (≥ 900°C) are sufficient to achieve degenerate doping in the polysilicon gates and avoid the depletion effects.


Sign in / Sign up

Export Citation Format

Share Document