Effect of sterilization methods on the mechanical stability and extracellular matrix constituents of decellularized brain tissues

Author(s):  
Burcu Yaldiz ◽  
Pelin Saglam-Metiner ◽  
Sefa Burak Cam ◽  
Petek Korkusuz ◽  
Ozlem Yesil-Celiktas
Molecules ◽  
2020 ◽  
Vol 25 (4) ◽  
pp. 978 ◽  
Author(s):  
Mariana I. Neves ◽  
Marco Araújo ◽  
Lorenzo Moroni ◽  
Ricardo M.P. da Silva ◽  
Cristina C. Barrias

Glycosaminoglycans (GAG) are long, linear polysaccharides that display a wide range of relevant biological roles. Particularly, in the extracellular matrix (ECM) GAG specifically interact with other biological molecules, such as growth factors, protecting them from proteolysis or inhibiting factors. Additionally, ECM GAG are partially responsible for the mechanical stability of tissues due to their capacity to retain high amounts of water, enabling hydration of the ECM and rendering it resistant to compressive forces. In this review, the use of GAG for developing hydrogel networks with improved biological activity and/or mechanical properties is discussed. Greater focus is given to strategies involving the production of hydrogels that are composed of GAG alone or in combination with other materials. Additionally, approaches used to introduce GAG-inspired features in biomaterials of different sources will also be presented.


2020 ◽  
Vol 21 (18) ◽  
pp. 6755 ◽  
Author(s):  
Santosh Pandit ◽  
Mina Fazilati ◽  
Karolina Gaska ◽  
Abderahmane Derouiche ◽  
Tiina Nypelö ◽  
...  

Bacteria are known to form biofilms on various surfaces. Biofilms are multicellular aggregates, held together by an extracellular matrix, which is composed of biological polymers. Three principal components of the biofilm matrix are exopolysaccharides (EPS), proteins, and nucleic acids. The biofilm matrix is essential for biofilms to remain organized under mechanical stress. Thanks to their polymeric nature, biofilms exhibit both elastic and viscous mechanical characteristics; therefore, an accurate mechanical description needs to take into account their viscoelastic nature. Their viscoelastic properties, including during their growth dynamics, are crucial for biofilm survival in many environments, particularly during infection processes. How changes in the composition of the biofilm matrix affect viscoelasticity has not been thoroughly investigated. In this study, we used interfacial rheology to study the contribution of the EPS component of the matrix to viscoelasticity of Bacillus subtilis biofilms. Two strategies were used to specifically deplete the EPS component of the biofilm matrix, namely (i) treatment with sub-lethal doses of vitamin C and (ii) seamless inactivation of the eps operon responsible for biosynthesis of the EPS. In both cases, the obtained results suggest that the EPS component of the matrix is essential for maintaining the viscoelastic properties of bacterial biofilms during their growth. If the EPS component of the matrix is depleted, the mechanical stability of biofilms is compromised and the biofilms become more susceptible to eradication by mechanical stress.


2007 ◽  
Vol 104 (23) ◽  
pp. 9633-9637 ◽  
Author(s):  
S. P. Ng ◽  
K. S. Billings ◽  
T. Ohashi ◽  
M. D. Allen ◽  
R. B. Best ◽  
...  

2014 ◽  
Vol 3 (5) ◽  
pp. 217-225 ◽  
Author(s):  
Renjith P. Nair ◽  
Jasmin Joseph ◽  
V.S. Harikrishnan ◽  
V.K. Krishnan ◽  
Lissy Krishnan

2021 ◽  
Vol 9 (3) ◽  
pp. 529
Author(s):  
Mnar Ghrayeb ◽  
Shahar Hayet ◽  
Neta Lester-Zer ◽  
Yael Levi-Kalisman ◽  
Liraz Chai

Functional amyloid proteins often appear as fibers in extracellular matrices of microbial soft colonies. In contrast to disease-related amyloid structures, they serve a functional goal that benefits the organism that secretes them, which is the reason for the title “functional”. Biofilms are a specific example of a microbial community in which functional amyloid fibers play a role. Functional amyloid proteins contribute to the mechanical stability of biofilms and mediate the adhesion of the cells to themselves as well as to surfaces. Recently, it has been shown that functional amyloid proteins also play a regulatory role in biofilm development. TasA is the major proteinaceous fibrilar component of the extracellular matrix of biofilms made of the soil bacterium and Gram-positive Bacillus subtilis. We have previously shown, as later corroborated by others, that in acidic solutions, TasA forms compact aggregates that are composed of tangled fibers. Here, we show that in a neutral pH and above a certain TasA concentration, the fibers of TasA are elongated and straight and that they bundle up in highly concentrated salt solutions. TasA fibers resemble the canonic amyloid morphology; however, these fibers also bear an interesting nm-scale periodicity along the fiber axis. At the molecular level, TasA fibers contain a twisted β-sheet structure, as indicated by circular dichroism measurements. Our study shows that the morphology of TasA fibers depends on the environmental conditions. Different fibrilar morphologies may be related with different functional roles in biofilms, ranging from granting biofilms with a mechanical support to acting as antibiotic agents.


Foods ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3116
Author(s):  
Khurshid Ahmad ◽  
Jeong-Ho Lim ◽  
Eun-Ju Lee ◽  
Hee-Jin Chun ◽  
Shahid Ali ◽  
...  

Cultured meat production is an evolving method of producing animal meat using tissue engineering techniques. Cells, chemical factors, and suitable biomaterials that serve as scaffolds are all essential for the cultivation of muscle tissue. Scaffolding is essential for the development of organized meat products resembling steaks because it provides the mechanical stability needed by cells to attach, differentiate, and mature. In in vivo settings, extracellular matrix (ECM) ensures substrates and scaffolds are provided for cells. The ECM of skeletal muscle (SM) maintains tissue elasticity, creates adhesion points for cells, provides a three-dimensional (3D) environment, and regulates biological processes. Consequently, creating mimics of native ECM is a difficult task. Animal-derived polymers like collagen are often regarded as the gold standard for producing scaffolds with ECM-like properties. Animal-free scaffolds are being investigated as a potential source of stable, chemically defined, low-cost materials for cultured meat production. In this review, we explore the influence of ECM on myogenesis and its role as a scaffold and vital component to improve the efficacy of the culture media used to produce cultured meat.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
R. T. De Silva ◽  
M. M. M. G. P. G. Mantilaka ◽  
K. L. Goh ◽  
S. P. Ratnayake ◽  
G. A. J. Amaratunga ◽  
...  

Mechanically robust alginate-based nanofibrous scaffolds were successfully fabricated by electrospinning method to mimic the natural extracellular matrix structure which benefits development and regeneration of tissues. Alginate-based nanofibres were electrospun from an alginate/poly(vinyl alcohol) (PVA) polyelectrolyte complex. SEM images revealed the spinnability of the complex composite nanofibrous scaffolds, showing randomly oriented, ultrafine, and virtually defects-free alginate-based/MgO nanofibrous scaffolds. Here, it is shown that an alginate/PVA complex scaffold, blended with near-spherical MgO nanoparticles (⌀ 45 nm) at a predetermined concentration (10% (w/w)), is electrospinnable to produce a complex composite nanofibrous scaffold with enhanced mechanical stability. For the comparison purpose, chemically cross-linked electrospun alginate-based scaffolds were also fabricated. Tensile test to rupture revealed the significant differences in the tensile strength and elastic modulus among the alginate scaffolds, alginate/MgO scaffolds, and cross-linked alginate scaffolds (P<0.05). In contrast to cross-linked alginate scaffolds, alginate/MgO scaffolds yielded the highest tensile strength and elastic modulus while preserving the interfibre porosity of the scaffolds. According to the thermogravimetric analysis, MgO reinforced alginate nanofibrous scaffolds exhibited improved thermal stability. These novel alginate-based/MgO scaffolds are economical and versatile and may be further optimised for use as extracellular matrix substitutes for repair and regeneration of tissues.


2017 ◽  
Vol 50 (1) ◽  
pp. 1601805 ◽  
Author(s):  
Gerald Burgstaller ◽  
Bettina Oehrle ◽  
Michael Gerckens ◽  
Eric S. White ◽  
Herbert B. Schiller ◽  
...  

The pulmonary extracellular matrix (ECM) determines the tissue architecture of the lung, and provides mechanical stability and elastic recoil, which are essential for physiological lung function. Biochemical and biomechanical signals initiated by the ECM direct cellular function and differentiation, and thus play a decisive role in lung development, tissue remodelling processes and maintenance of adult homeostasis. Recent proteomic studies have demonstrated that at least 150 different ECM proteins, glycosaminoglycans and modifying enzymes are expressed in the lung, and these assemble into intricate composite biomaterials. These highly insoluble assemblies of interacting ECM proteins and their glycan modifications can act as a solid phase-binding interface for hundreds of secreted proteins, which creates an information-rich signalling template for cell function and differentiation. Dynamic changes within the ECM that occur upon injury or with ageing are associated with several chronic lung diseases. In this review, we summarise the available data about the structure and function of the pulmonary ECM, and highlight changes that occur in idiopathic pulmonary fibrosis (IPF), pulmonary arterial hypertension (PAH), chronic obstructive pulmonary disease (COPD), asthma and lung cancer. We discuss potential mechanisms of ECM remodelling and modification, which we believe are relevant for future diagnosis and treatment of chronic lung disease.


Sign in / Sign up

Export Citation Format

Share Document