Interfacial tension and equilibrium contact angle of lipids on polished glass in supercritical CO2

Author(s):  
Eileen Santos ◽  
Prashant R. Waghmare ◽  
Feral Temelli
2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Edward Bormashenko ◽  
Gene Whyman ◽  
Oleg Gendelman

The physical mechanism of elasticity of liquid surfaces coated with colloidal particles is proposed. It is suggested that particles are separated by water clearings and the capillary interaction between them is negligible. The case is treated when the colloidal layer is deformed normally to its surface. The elasticity arises as an interfacial effect. The effective Young modulus of a surface depends on the interfacial tension, equilibrium contact angle, radius of colloidal particles, and their surface density. For the nanometrically scaled particles the line tension becomes essential and has an influence on the effective Young modulus.


2021 ◽  
Author(s):  
Xu-Guang Song ◽  
Ming-Wei Zhao ◽  
Cai-Li Dai ◽  
Xin-Ke Wang ◽  
Wen-Jiao Lv

AbstractThe ultra-low permeability reservoir is regarded as an important energy source for oil and gas resource development and is attracting more and more attention. In this work, the active silica nanofluids were prepared by modified active silica nanoparticles and surfactant BSSB-12. The dispersion stability tests showed that the hydraulic radius of nanofluids was 58.59 nm and the zeta potential was − 48.39 mV. The active nanofluids can simultaneously regulate liquid–liquid interface and solid–liquid interface. The nanofluids can reduce the oil/water interfacial tension (IFT) from 23.5 to 6.7 mN/m, and the oil/water/solid contact angle was altered from 42° to 145°. The spontaneous imbibition tests showed that the oil recovery of 0.1 wt% active nanofluids was 20.5% and 8.5% higher than that of 3 wt% NaCl solution and 0.1 wt% BSSB-12 solution. Finally, the effects of nanofluids on dynamic contact angle, dynamic interfacial tension and moduli were studied from the adsorption behavior of nanofluids at solid–liquid and liquid–liquid interface. The oil detaching and transporting are completed by synergistic effect of wettability alteration and interfacial tension reduction. The findings of this study can help in better understanding of active nanofluids for EOR in ultra-low permeability reservoirs.


2012 ◽  
Author(s):  
Narjes Shojaikaveh ◽  
Cas Berentsen ◽  
Susanne Eva Johanne Rudolph-Floter ◽  
Karl Heinz Wolf ◽  
William Richard Rossen

Author(s):  
Anand N. P. Radhakrishnan ◽  
Marc Pradas ◽  
Serafim Kalliadasis ◽  
Asterios Gavriilidis

Micro-engineered devices (MED) are seeing a significant growth in performing separation processes1. Such devices have been implemented in a range of applications from chemical catalytic reactors to product purification systems like microdistillation. One of the biggest advantages of these devices is the dominance of capillarity and interfacial tension forces. A field where MEDs have been used is in gas-liquid separations. These are encountered, for example, after a chemical reactor, where a gaseous component being produced needs immediate removal from the reactor, because it can affect subsequent reactions. The gaseous phase can be effectively removed using an MED with an array of microcapillaries. Phase-separation can then be brought about in a controlled manner along these capillary structures. For a device made from a hydrophilic material (e.g. Si or glass), the wetted phase (e.g. water) flows through the capillaries, while the non-wetted dispersed phase (e.g. gas) is prevented from entering the capillaries, due to capillary pressure. Separation of liquid-liquid flows can also be achieved via this approach. However, the underlying mechanism of phase separation is far from being fully understood. The pressure at which the gas phase enters the capillaries (gas-to-liquid breakthrough) can be estimated from the Young-Laplace equation, governed by the surface tension (γ) of the wetted phase, capillary width (d) and height (h), and the interface equilibrium contact angle (θeq). Similarly, the liquid-to-gas breakthrough pressure (i.e. the point at which complete liquid separation ceases and liquid exits through the gas outlet) can be estimated from the pressure drop across the capillaries via the Hagen-Poiseuille (HP) equation. Several groups reported deviations from these estimates and therefore, included various parameters to account for the deviations. These parameters usually account for (i) flow of wetted phase through ‘n’ capillaries in parallel, (ii) modification of geometric correction factor of Mortensen et al., 2005 2 and (iii) liquid slug length (LS) and number of capillaries (n) during separation. LS has either been measured upstream of the capillary zone or estimated from a scaling law proposed by Garstecki et al., 2006 3. However, this approach does not address the balance between the superficial inlet velocity and net outflow of liquid through each capillary (qc). Another shortcoming of these models has been the estimation of the apparent contact angle (θapp), which plays a critical role in predicting liquid-to-gas breakthrough. θapp is either assumed to be equal to θeq or measured with various techniques, e.g. through capillary rise or a static droplet on a flat substrate, which is significantly different from actual dynamic contact angles during separation. In other cases, the Cox-Voinov model has been used to calculate θapp from θeq and capillary number. Hence, the empirical models available in the literature do not predict realistic breakthrough pressures with sufficient accuracy. Therefore, a more detailed in situ investigation of the critical liquid slug properties during separation is necessary. Here we report advancements in the fundamental understanding of two-phase separation in a gas-liquid separation (GLS) device through a theoretical model developed based on critical events occurring at the gas-liquid interfaces during separation.


1971 ◽  
pp. 134-139
Author(s):  
V. S. Baibakov ◽  
P. P. Ryazantsev ◽  
V. P. Safronov ◽  
L. M. Shcherbakov

Author(s):  
Sergey Bublik ◽  
Sarina Bao ◽  
Merete Tangstad ◽  
Kristian Etienne Einarsrud

AbstractThe present study has investigated the influence of sulfur content in synthetic FeMn and SiMn from 0 to 1.00 wt pct on interfacial properties between these ferroalloys and slags. The effect of experimental parameters such as temperature and holding time was evaluated. Interfacial interaction between ferroalloys and slags was characterized by interfacial tension and apparent contact angle between metal and slag, measured based on the Young–Laplace equation and an inverse modelling approach developed in OpenFOAM. The results show that sulfur has a significant influence on both interfacial tension and apparent contact angle, decreasing both values and promoting the formation of a metal-slag mixture. Despite the fact that sulfur was added only to the ferroalloys, most of sulfur is distributed into slag after reactions with the metal phase. Increasing the maximum experimental temperature in the sessile drop furnace also resulted in a decrease of both interfacial properties, resulting in higher mass transfer rates and intensive reactions between metal and slag. The effect of holding time demonstrated that after reaching equilibrium in FeMn-slag and SiMn-slag systems (both with and without sulfur), interfacial tension and apparent contact angle remain constant.


Author(s):  
H. Samara ◽  
T. V. Ostrowski ◽  
F. Ayad Abdulkareem ◽  
E. Padmanabhan ◽  
P. Jaeger

AbstractShales are mostly unexploited energy resources. However, the extraction and production of their hydrocarbons require innovative methods. Applications involving carbon dioxide in shales could combine its potential use in oil recovery with its storage in view of its impact on global climate. The success of these approaches highly depends on various mechanisms taking place in the rock pores simultaneously. In this work, properties governing these mechanisms are presented at technically relevant conditions. The pendant and sessile drop methods are utilized to measure interfacial tension and wettability, respectively. The gravimetric method is used to quantify CO2 adsorption capacity of shale and gas adsorption kinetics is evaluated to determine diffusion coefficients. It is found that interfacial properties are strongly affected by the operating pressure. The oil-CO2 interfacial tension shows a decrease from approx. 21 mN/m at 0.1 MPa to around 3 mN/m at 20 MPa. A similar trend is observed in brine-CO2 systems. The diffusion coefficient is observed to slightly increase with pressure at supercritical conditions. Finally, the contact angle is found to be directly related to the gas adsorption at the rock surface: Up to 3.8 wt% of CO2 is adsorbed on the shale surface at 20 MPa and 60 °C where a maximum in contact angle is also found. To the best of the author’s knowledge, the affinity of calcite-rich surfaces toward CO2 adsorption is linked experimentally to the wetting behavior for the first time. The results are discussed in terms of CO2 storage scenarios occurring optimally at 20 MPa.


2021 ◽  
Vol 303 ◽  
pp. 01001
Author(s):  
Yu Haiyang ◽  
Ji Wenjuan ◽  
Luo Cheng ◽  
Lu Junkai ◽  
Yan Fei ◽  
...  

In order to give full play to the role of imbibition of capillary force and enhance oil recovery of ultralow permeability sandstone reservoir after hydraulic fracturing, the mixed water fracture technology based on functional slick water is described and successfully applied to several wells in oilfield. The core of the technology is determination of influence factors of imbibition oil recovery, the development of new functional slick water system and optimization of volume fracturing parameters. The imbibition results show that it is significant effect of interfacial tension, wetting on imbibition oil recovery. The interfacial tension decreases by an order of magnitude, the imbibition oil recovery reduces by more than 10%. The imbibition oil recovery increases with the contact angle decreasing. The emulsifying ability has no obvious effect on imbibition oil recovery. The functional slick water system considering imbibition is developed based on the solution rheology and polymer chemistry. The system has introduced the active group and temperature resistant group into the polymer molecules. The molecular weight is controlled in 1.5 million. The viscosity is greater than 2mPa·s after shearing 2h under 170s-1 and 100℃. The interfacial tension could decrease to 10-2mN/m. The contact angle decreased from 58° to 22° and the core damage rate is less than 12%. The imbibition oil recovery could reach to 43%. The fracturing process includes slick water stage and linear gel stage. 10% 100 mesh ceramists and 8% temporary plugging agents are carried into the formation by functional slick water. 40-70 mesh ceramists are carried by linear gel. The liquid volume ratio is about 4:1 and the displacement is controlled at 10-12m3/min. The sand content and fracturing fluid volumes of single stage are 80m3 and 2500 m3 respectively. Compared with conventional fracturing, due to imbibition oil recovery, there is only 25% of the fracturing fluid flowback rate when the crude oil flew out. When the oil well is in normal production, about 50% of the fracturing fluid is not returned. It is useful to maintain the formation energy and slow down the production decline. The average cumulative production of vertical wells is greater than 2800t, and the effective period is more than 2 years. This technology overcoming the problem of high horizontal stress difference and lack of natural fracture has been successfully applied in Jidong Oilfield ultralow permeability reservoir. The successful application of this technology not only helps to promote the effective use of ultralow permeability reservoirs, but also helps to further clarify the role of imbibition recovery, energy storage and oil-water replacement mechanism.


Sign in / Sign up

Export Citation Format

Share Document