Molecular Insight into Oil Displacement by CO2 Flooding on Rough Silica Surface

Author(s):  
Pengfei Lu ◽  
Tangming Mo ◽  
Yan Wei ◽  
Zhaoli Guo ◽  
Guang Feng
1980 ◽  
Vol 20 (04) ◽  
pp. 281-292 ◽  
Author(s):  
George C. Bernard ◽  
L.W. Holm ◽  
Craig P. Harvey

Abstract This paper presents results from a study designed to improve effectiveness of CO2 flooding by reducing CO2 mobility. In the course of reaching this objective we (1) screened surfactants for their ability to generate an effective and stable emulsion with CO2 under reservoir conditions, (2) determined the concentration range over which surfactants were effective, (3) examined chemical stability of the surfactants at reservoir conditions, (4) determined the extent to which emulsifying action alters gas and liquid mobilities in carbonate and sandstone cores, (5) determined that surfactant can enhance the production of residual oil from watered-out production of residual oil from watered-out carbonate cores by CO2, and (6) showed that the permeability reduction caused by surfactant can be permeability reduction caused by surfactant can be dissipated.At reservoir conditions required for miscible displacement, carbon dioxide exists in its critical state as a very dense fluid whose viscosity is about oneeighth that of crude oil. Generally, this unfavorable viscosity and mobility ratio produces inefficient oil displacement. This study shows that surfactant reduces CO2 mobility and should improve oil displacement by CO2, presumably by reducing flow through the most permeable zones, thus increasing areal and vertical sweep efficiencies.All three classes of surfactants (anionic, cationic, and nonionic) were found to be stable under conditions encountered during a CO2 flood in limestone formation; however, only a few surfactants had proper adsorption and emulsifying properties. proper adsorption and emulsifying properties. Surfactant generated foams or emulsions with CO2 at reservoir conditions (1,000 to 3,000 psi and 135 degrees F) dramatically reduced CO2 flow through sandstone and carbonate cores. Surfactant reduced the amount of CO2 used to recover a given volume of oil, especially from watered-out cores. The mechanism of tertiary oil production from linear cores appears to be limited to CO2 extraction. Approximately the same oil recovery was obtained either by continuous CO2 injection after a surfactant slug or by alternate slugs of CO2 and surfactant solution. It was found that oil recovery efficiency increased when surfactant was used with CO2 and that efficiency increased with flooding pressure.One anionic surfactant was found to be superior for this purpose. This surfactant emulsified CO2 well, was least adsorbed on carbonate rocks, and greatly reduced CO2 mobility in linear cores at concentrations of 0.1 to 1 %.The study indicates that effectiveness of CO2 miscible flooding can be increased by alternate injection of CO2 and aqueous surfactant slugs into the reservoir. Introduction The basic principles of CO2 flooding have been studied for the past 25 years by many investigators. Numerous laboratory studies have demonstrated that CO2, at elevated pressures, can recover oil unrecoverable by conventional methods and that super-critical CO2 develops multicontact miscibility with many crude oils, with a very efficient oil displacement, approaching 100% of the contacted oil. Generally, oil recoveries with CO2 have been much higher in the laboratory than in the field because field conditions are more severe for all oil recovery processes.A principal problem in CO2 flooding is the low viscosity of CO2 compared with that of crude oil. At reservoir conditions, CO2 viscosity is often 10 to 50 times lower than oil viscosity. At these unfavorable viscosity (mobility) ratios, CO2 has a great potential to channel through the oil. potential to channel through the oil. SPEJ P. 281


Author(s):  
Timing Fang ◽  
Yingnan Zhang ◽  
Youguo Yan ◽  
Zhiyuan Wang ◽  
Jun Zhang

2021 ◽  
Vol 783 ◽  
pp. 139044
Author(s):  
Chunming Xiong ◽  
Shujun Li ◽  
Bin Ding ◽  
Xiangfei Geng ◽  
Jun Zhang ◽  
...  

1966 ◽  
Vol 24 ◽  
pp. 322-330
Author(s):  
A. Beer

The investigations which I should like to summarize in this paper concern recent photo-electric luminosity determinations of O and B stars. Their final aim has been the derivation of new stellar distances, and some insight into certain patterns of galactic structure.


1984 ◽  
Vol 75 ◽  
pp. 461-469 ◽  
Author(s):  
Robert W. Hart

ABSTRACTThis paper models maximum entropy configurations of idealized gravitational ring systems. Such configurations are of interest because systems generally evolve toward an ultimate state of maximum randomness. For simplicity, attention is confined to ultimate states for which interparticle interactions are no longer of first order importance. The planets, in their orbits about the sun, are one example of such a ring system. The extent to which the present approximation yields insight into ring systems such as Saturn's is explored briefly.


Author(s):  
D. F. Blake ◽  
L. F. Allard ◽  
D. R. Peacor

Echinodermata is a phylum of marine invertebrates which has been extant since Cambrian time (c.a. 500 m.y. before the present). Modern examples of echinoderms include sea urchins, sea stars, and sea lilies (crinoids). The endoskeletons of echinoderms are composed of plates or ossicles (Fig. 1) which are with few exceptions, porous, single crystals of high-magnesian calcite. Despite their single crystal nature, fracture surfaces do not exhibit the near-perfect {10.4} cleavage characteristic of inorganic calcite. This paradoxical mix of biogenic and inorganic features has prompted much recent work on echinoderm skeletal crystallography. Furthermore, fossil echinoderm hard parts comprise a volumetrically significant portion of some marine limestones sequences. The ultrastructural and microchemical characterization of modern skeletal material should lend insight into: 1). The nature of the biogenic processes involved, for example, the relationship of Mg heterogeneity to morphological and structural features in modern echinoderm material, and 2). The nature of the diagenetic changes undergone by their ancient, fossilized counterparts. In this study, high resolution TEM (HRTEM), high voltage TEM (HVTEM), and STEM microanalysis are used to characterize tha ultrastructural and microchemical composition of skeletal elements of the modern crinoid Neocrinus blakei.


Author(s):  
Peter Sterling

The synaptic connections in cat retina that link photoreceptors to ganglion cells have been analyzed quantitatively. Our approach has been to prepare serial, ultrathin sections and photograph en montage at low magnification (˜2000X) in the electron microscope. Six series, 100-300 sections long, have been prepared over the last decade. They derive from different cats but always from the same region of retina, about one degree from the center of the visual axis. The material has been analyzed by reconstructing adjacent neurons in each array and then identifying systematically the synaptic connections between arrays. Most reconstructions were done manually by tracing the outlines of processes in successive sections onto acetate sheets aligned on a cartoonist's jig. The tracings were then digitized, stacked by computer, and printed with the hidden lines removed. The results have provided rather than the usual one-dimensional account of pathways, a three-dimensional account of circuits. From this has emerged insight into the functional architecture.


Author(s):  
J. J. Laidler ◽  
B. Mastel

One of the major materials problems encountered in the development of fast breeder reactors for commercial power generation is the phenomenon of swelling in core structural components and fuel cladding. This volume expansion, which is due to the retention of lattice vacancies by agglomeration into large polyhedral clusters (voids), may amount to ten percent or greater at goal fluences in some austenitic stainless steels. From a design standpoint, this is an undesirable situation, and it is necessary to obtain experimental confirmation that such excessive volume expansion will not occur in materials selected for core applications in the Fast Flux Test Facility, the prototypic LMFBR now under construction at the Hanford Engineering Development Laboratory (HEDL). The HEDL JEM-1000 1 MeV electron microscope is being used to provide an insight into trends of radiation damage accumulation in stainless steels, since it is possible to produce atom displacements at an accelerated rate with 1 MeV electrons, while the specimen is under continuous observation.


Author(s):  
John R. Devaney

Occasionally in history, an event may occur which has a profound influence on a technology. Such an event occurred when the scanning electron microscope became commercially available to industry in the mid 60's. Semiconductors were being increasingly used in high-reliability space and military applications both because of their small volume but, also, because of their inherent reliability. However, they did fail, both early in life and sometimes in middle or old age. Why they failed and how to prevent failure or prolong “useful life” was a worry which resulted in a blossoming of sophisticated failure analysis laboratories across the country. By 1966, the ability to build small structure integrated circuits was forging well ahead of techniques available to dissect and analyze these same failures. The arrival of the scanning electron microscope gave these analysts a new insight into failure mechanisms.


Author(s):  
D. R. Liu ◽  
S. S. Shinozaki ◽  
J. S. Park ◽  
B. N. Juterbock

The electric and thermal properties of the resistor material in an automotive spark plug should be stable during its service lifetime. Containing many elements and many phases, this material has a very complex microstructure. Elemental mapping with an electron microprobe can reveal the distribution of all relevant elements throughout the sample. In this work, it is demonstrated that the charge-up effect, which would distort an electron image and, therefore, is normally to be avoided in an electron imaging work, could be used to advantage to reveal conductive and resistive zones in a sample. Its combination with elemental mapping can provide valuable insight into the underlying conductivity mechanism of the resistor.This work was performed in a CAMECA SX-50 microprobe. The spark plug used in the present report was a commercial product taken from the shelf. It was sectioned to expose the cross section of the resistor. The resistor was known not to contain the precious metal Au as checked on the carbon coated sample. The sample was then stripped of carbon coating and re-coated with Au.


Sign in / Sign up

Export Citation Format

Share Document