The electroless deposition of nickel on SiC particles for aluminum matrix composites

2004 ◽  
Vol 180-181 ◽  
pp. 575-579 ◽  
Author(s):  
F. Kretz ◽  
Z. Gácsi ◽  
J. Kovács ◽  
T. Pieczonka
2016 ◽  
Vol 256 ◽  
pp. 81-87 ◽  
Author(s):  
Ju Fu Jiang ◽  
Ying Wang ◽  
Shou Jing Luo

Semisolid slurries of 7075 aluminum matrix composite reinforced with nano-sized SiC particles were fabricated by ultrasonic assisted semisolid stirring (UASS) method. Rheoforming and thixoforming of typical cylindrical parts were investigated. The results show that high-quality semisolid slurries with spheroidal solid grain of 38 µm were fabricated by UASS. The nano-sized SiC particles were dispersed uniformly due to transient cavitation and acoustic streaming of ultrasonic wave and high and controllable viscosity of semisolid slurry. Typical cylindrical composite parts with good surface quality and complete filling were rheoformed and thixoformed successfully. Ultimate tensile strength (UTS) of the rheoformed and thixoformed composite parts are enhanced due to addition of nano-sized SiC particles. However, elongation decreased as compared to those of the matrix parts. Maximum UTS of 550 MPa was achieved in the thixoformed composite part with T6 treatment. Increase of dislocation density around the reinforcement particles leads to improvement of the strength and wear resistance of the composite.


2007 ◽  
Vol 546-549 ◽  
pp. 657-660
Author(s):  
Ming Hu ◽  
Hai Ting Hu ◽  
Zheng Xiao Hong ◽  
Suk Bong Kang ◽  
Kwang Jun Euh

The microstructures of sprayed SiCp/Al composite fabricated by thermal spraying technique by optical microscope (OM)scanning electronic microscope (SEM), transmission electronic microscope (TEM), X-ray (diffractometer) XRD, selected area electron diffraction (SAED), energy dispersive spectrum (EDS) techniques, were investigated. The composite consisted of SiC and Al, along with single crystal Si and amorphorous Si, and tiny Al2O3. The interfaces between SiC particles and Al matrix bonded well, and tiny reactants like Al2O3 were found near the interfaces. The mechanisms of chemical reactions during sprayin were discussed g. The nano-Al grains and particles were observed in the sprayed composite. The formation of nano-Al grains and particles of SiCp/ Al composites were explained. It has been found that Several interface relationships existed in the sprayed composite.


2015 ◽  
Vol 29 (06n07) ◽  
pp. 1540002 ◽  
Author(s):  
Dongfeng Cheng ◽  
Jitai Niu ◽  
Zeng Gao ◽  
Peng Wang

This experiment chooses A356 aluminum matrix composites containing 55% SiC particle reinforcing phase as the parent metal and Al – Si – Cu – Zn – Ni alloy metal as the filler metal. The brazing process is carried out in vacuum brazing furnace at the temperature of 550°C and 560°C for 3 min, respectively. The interfacial microstructures and fracture surfaces are investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and energy spectrum analysis (EDS). The result shows that adequacy of element diffusion are superior when brazing at 560°C, because of higher activity and liquidity. Dislocations and twins are observed at the interface between filler and composite due to the different expansion coefficient of the aluminum alloy matrix and SiC particles. The fracture analysis shows that the brittle fracture mainly located at interface of filler and composites.


2019 ◽  
Vol 25 (4) ◽  
pp. 253 ◽  
Author(s):  
Manoj Kumar Pal ◽  
Arnav Vikram ◽  
Vineet Bajaj

<p class="AMSmaintext">Aluminium6061 alloy composites containing various volume fractions of Silicon Carbide (SiC) particles (0, 5%, 10%, 15%, 20% and 25%) were prepared by stir casting method. In the current study,<strong> </strong>microstructures and mechanical properties of cast silicon carbide (SiC) reinforced aluminum matrix composites (AMCs) were investigated. Optical microscopic examination, SEM, tensile strength test, hardness test and elongation test were carried out. The results showed that with the addition of SiC reinforcements in Aluminum6061 matrix increased hardness and tensile strength however, decreased elongation at 25% SiC reinforced AMC. Hardness and tensile strength were observed to be are maximum at 25% SiC and elongation is minimum at 25% SiC. Microstructural observation confirmed clustering and homogeneous distribution of SiC particles in the Al6061 matrix.</p>


Sign in / Sign up

Export Citation Format

Share Document