Influence of electrodeposition conditions on the microstructure and corrosion resistance of Zn–Ni alloy coatings from a deep eutectic solvent

2014 ◽  
Vol 242 ◽  
pp. 34-41 ◽  
Author(s):  
S. Fashu ◽  
C.D. Gu ◽  
X.L. Wang ◽  
J.P. Tu
2019 ◽  
Vol 31 (4) ◽  
pp. 891-895
Author(s):  
Dinesh Kumar Chelike ◽  
K. Juliet Gnana Sundari

Considering the good corrosion resistance of Zn-Ni alloy, it is selected in the present study to be the protective coating on mild steel and it is considered as a strong candidate for the replacement of environmentally hazardous cadmium. Zn-Ni alloy coating is applied by electrodeposition at optimum temperature, current density and time. The bath solution used is consisting of EDTA as complexing agent. The electrodeposition is also carried out with tartaric acid and benzaldehyde additives to have good corrosion resistance and brightness. The electrodeposits obtained with and without additives are examined for nature and alloy composition. The corrosion behaviour of the electrodeposits is studied by Tafel polarization and electrochemical impedance spectroscopy.


1989 ◽  
Vol 33 ◽  
pp. 171-175
Author(s):  
Toshihiko Sasaki ◽  
Makoto Kuramoto ◽  
Yasuo Yoshioka

Zn-Ni-alloy electroplated steels are one of the surface-treated materials with a high corrosion resistance and are mostly used for automobiles. It is said that the corrosion resistance is more than four times as great as that of Zn-plated steels. Concerning x-ray stress measurement, Kyono et al reported the result of measurement on y (552) planes and showed that the sin2φ diagram was severely curved.X-ray stress analysis in surface-treated materials will become more important. Some problems, however, remain to be studied when we apply the x-ray method to thin layers. For example, the effective x-ray penetration depth may be different from that in ordinary materials. And complex gradients of stresses and compositions may exist.


RSC Advances ◽  
2015 ◽  
Vol 5 (75) ◽  
pp. 60698-60707 ◽  
Author(s):  
Ruiqian Li ◽  
Jun Liang ◽  
Yuanyuan Hou ◽  
Qingwei Chu

The corrosion resistance of Zn–GO is much better than that of pure Zn.


Materials ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 924 ◽  
Author(s):  
Juliusz Winiarski ◽  
Anna Niciejewska ◽  
Jacek Ryl ◽  
Kazimierz Darowicki ◽  
Sylwia Baśladyńska ◽  
...  

Cerium molybdenum oxide hydrate microflakes are codeposited with nickel from a deep eutectic solvent-based bath. During seven days of exposure in 0.05 M NaCl solution, the corrosion resistance of composite coating (Ni/CeMoOxide) is slightly reduced, due to the existence of some microcracks caused by large microflakes. Multielemental analysis of the solution, in which coatings are exposed and the qualitative changes in the surface chemistry (XPS) show selective etching molybdenum from microflakes. The amount of various molybdenum species within the surface of coating nearly completely disappear, due to the corrosion process. Significant amounts of Ce3+ compounds are removed, however the corrosion process is less selective towards the cerium, and the overall cerium chemistry remains unchanged. Initially, blank Ni coatings are covered by NiO and Ni(OH)2 in an atomic ratio of 1:2. After exposure, the amount of Ni(OH)2 increases in relation to NiO (ratio 1:3). For the composite coating, the atomic ratios of both forms of nickel vary from 1:0.8 to 1:1.3. Despite achieving lower corrosion resistance of the composite coating, the applied concept of using micro-flakes, whose skeleton is a system of Ce(III) species and active form are molybdate ions, may be interesting for applications in materials with potential self-healing properties.


2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Nabeel Alharthi ◽  
El-Sayed M. Sherif ◽  
Hany S. Abdo ◽  
S. Zein El Abedin

The effect of Ni content on the resistance against corrosion of Fe-36% Ni and Fe-45% Ni alloys in 1 M hydrochloric acid pickling solution was reported. Various electrochemical and spectroscopic techniques such as potentiodynamic cyclic polarization (CPP), open-circuit potential (OCP), electrochemical impedance spectroscopy (EIS), potentiostatic current-time (PCT), and scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS) have been employed. CPP measurements indicated that the corrosion current and corrosion rate recorded lower values for the alloy that had higher nickel content. OCP curves proved that the presence of high Ni content shifts the absolute potential to the positive potential direction. EIS results revealed that the surface and polarization resistances were much higher for the alloy with higher Ni content. PCT curves also showed that the absolute currents were lower for Fe-45% Ni alloy. All results were in good agreement with others and confirmed clearly that the corrosion resistance in HCl solutions for Fe-45% Ni alloy was higher than that obtained for Fe-45% Ni alloy.


2019 ◽  
Vol 158 ◽  
pp. 108107 ◽  
Author(s):  
A. Maciej ◽  
A. Wadas ◽  
M. Sowa ◽  
R. Socha ◽  
G. Dercz ◽  
...  

1970 ◽  
Vol 24 ◽  
pp. 3-11
Author(s):  
Pom Lal Kharel ◽  
Jagadish Bhattarai

The synergistic effect of chromium addition in the sputter-deposited amorphous or nanocrystalline W-Cr-(4-15)Ni alloys is studied in alkaline NaOH solutions at 25°C, open to air using immersion tests and electrochemical measurements. In 1 M NaOH solution, the addition of chromium to W-Cr-(4-15)Ni alloys containing 42-75 at % chromium increased the corrosion resistance and shifted the open circuit potential more noble so as to show higher corrosion resistance than those of alloy-constituting elements (that is, tungsten, chromium and nickel). The corrosion rates (that is, about 2-5 x 10-3 mm.y-1) of all the examined W-Cr-(4-15)Ni alloys are about two orders of magnitude lower than that of tungsten and nearly one order of magnitude lower than that of chromium metal. The open circuit potential of the W-Cr-(4-15)Ni alloys is generally increased with increasing chromium content in different concentrations of NaOH solutions. The passivity of the WCr-(4-15)Ni alloys is increased with decreasing the concentration of NaOH solutions at 25°C. Keywords: Corrosion resistance; Sputter deposition;  W-Cr-Ni alloy;  NaOH solution; Open Circuit  potential. DOI: 10.3126/jncs.v24i0.2380Journal of Nepal Chemical Society, Vol. 24, 2009 Page: 3-11


Sign in / Sign up

Export Citation Format

Share Document