Carbon nanotubes grease with high electrical conductivity

2020 ◽  
Vol 268 ◽  
pp. 116496
Author(s):  
Greg Christensen ◽  
Jack Yang ◽  
Ding Lou ◽  
George Hong ◽  
Haiping Hong ◽  
...  
2012 ◽  
Vol 66 (5) ◽  
Author(s):  
Mária Omastová ◽  
Matej Mičušík

AbstractPolypyrrole is one of the most frequently studied conducting polymers, having high electrical conductivity and stability, suitable for multi-functionalised applications. Coatings of chemically synthesised polypyrrole applied onto various organic and inorganic materials, such as polymer particles and films, nanoparticles of metal oxides, clay minerals, and carbon nanotubes are reviewed in this paper. Its primary subject is the formation of new materials and their application in which chemical oxidative polymerisation of pyrrole was used. These combined materials are used in antistatic applications, such as anti-corrosion coating, radiation-shielding, but also as new categories of sensors, batteries, and components for organic electronics are created by coating substrates with conducting polymer layers or imprinting technologies.


2015 ◽  
Vol 3 (39) ◽  
pp. 10256-10266 ◽  
Author(s):  
Ivan Puchades ◽  
Colleen C. Lawlor ◽  
Christopher M. Schauerman ◽  
Andrew R. Bucossi ◽  
Jamie E. Rossi ◽  
...  

Electronic-type-separated SWCNTs thin-films were used to demonstrate that the strength of the redox potential of dopants influences their electrical conductivity enhancement.


2016 ◽  
Vol 4 (1) ◽  
pp. 74-82 ◽  
Author(s):  
A. Morelos-Gómez ◽  
M. Fujishige ◽  
S. Magdalena Vega-Díaz ◽  
I. Ito ◽  
T. Fukuyo ◽  
...  

H2O2treatment can decrease the electrical resistivity of double walled carbon nanotube fibers. The experimental observations suggest that small diameter carbon nanotubes are removed from the fiber sample.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Hayato Yabuki ◽  
Susumu Yonezawa ◽  
Rikuo Eguchi ◽  
Masayuki Takashiri

Abstract Single-wall carbon nanotubes (SWCNTs) and Bi2Te3 nanoplates are very promising thermoelectric materials for energy harvesting. When these two materials are combined, the resulting nanocomposites exhibit high thermoelectric performance and excellent flexibility. However, simple mixing of these materials is not effective in realizing high performance. Therefore, we fabricated integrated nanocomposites by adding SWCNTs during solvothermal synthesis for the crystallization of Bi2Te3 nanoplates and prepared flexible integrated nanocomposite films by drop-casting. The integrated nanocomposite films exhibited high electrical conductivity and an n-type Seebeck coefficient owing to the low contact resistance between the nanoplates and SWCNTs. The maximum power factor was 1.38 μW/(cm K2), which was 23 times higher than that of a simple nanocomposite film formed by mixing SWCNTs during drop-casting, but excluding solvothermal synthesis. Moreover, the integrated nanocomposite films maintained their thermoelectric properties through 500 bending cycles.


Sign in / Sign up

Export Citation Format

Share Document