Polypyrrole coating of inorganic and organic materials by chemical oxidative polymerisation

2012 ◽  
Vol 66 (5) ◽  
Author(s):  
Mária Omastová ◽  
Matej Mičušík

AbstractPolypyrrole is one of the most frequently studied conducting polymers, having high electrical conductivity and stability, suitable for multi-functionalised applications. Coatings of chemically synthesised polypyrrole applied onto various organic and inorganic materials, such as polymer particles and films, nanoparticles of metal oxides, clay minerals, and carbon nanotubes are reviewed in this paper. Its primary subject is the formation of new materials and their application in which chemical oxidative polymerisation of pyrrole was used. These combined materials are used in antistatic applications, such as anti-corrosion coating, radiation-shielding, but also as new categories of sensors, batteries, and components for organic electronics are created by coating substrates with conducting polymer layers or imprinting technologies.

2020 ◽  
Vol 835 ◽  
pp. 200-207
Author(s):  
Mariamu K. Ali ◽  
Ahmed Abd Moneim

Polyaniline (PANI) has been considered for thermoelectric (T.E) applications due to its facile preparation methods, easy doping-dedoping processes and its environmental stability. Like other conducting polymers (CPs), it has low thermal conductivity (usually below 1 Wm-1K-1) which is favorable for T.E applications, however studies have shown that it still suffers from low power factors as a result of low electrical conductivity. For this reason, PANI has been compounded with other materials such as polymers, inorganic nanoparticles and carbon nanoparticles to enhance its electrical conductivity, power factors (PF) and ultimately zT value.This work is focused on the synthesis and characterization of n-type polyaniline nanocomposites doped with reduced graphene oxide (rGO). The rGO was prepared through oxidation of graphite and subsequent reduction and incorporated into polyaniline through in situ polymerization and the resulting nanocomposites were characterized. Addition of rGO resulted in enhancement of the electrical conductivity of polyaniline from 10-3 S/cm to 10-1 S/cm which is two orders of magnitude higher. This contributed to the enhanced PF, an indication that thermoelectric behavior of conducting polymers can be boosted through compounding with inorganic materials.


2020 ◽  
Vol 268 ◽  
pp. 116496
Author(s):  
Greg Christensen ◽  
Jack Yang ◽  
Ding Lou ◽  
George Hong ◽  
Haiping Hong ◽  
...  

Author(s):  
Parthasarathy Srinivasan ◽  
Soumadri Samanta ◽  
Akshay Krishnakumar ◽  
John Bosco Balaguru Rayappan ◽  
Kamalakannan Kailasam

Over the past decades, many materials like metal oxides, conducting polymers, carbon nanotubes, 2D materials, graphene, zeolites and porous organic frameworks (MOFs and COFs) have been explored for chemo-sensing applications...


1989 ◽  
Vol 173 ◽  
Author(s):  
Alejandro Andreatta ◽  
S. Tokito ◽  
P. Smith ◽  
A. J. Heeger

ABSTRACTWe present a summary of our recent results on the electrical and mechanical properties of fibers made from poly(2,5-dimethoxy-p-phenylene vinylene), PDMPV and poly(2,5-thienylene vinylene), PTV, using the precursor polymer methodology, and from polyaniline, PANI, using the method of processing as polyblends with poly-(p-phenylene terephthalamide), PPTA, from sulfuric acid. The solubility of both PANI and PPTA in H2SO4 presents a unique opportunity for co-dissolving and blending PANI and PPTA to exploit the excellent mechanical properties of PPTA and the electrical conductivity of PANI; we summarize the electrical and mechanical properties of such composite fibers. For PDMPV and PTV fibers, we find a strong correlation between the conductivity and the tensile strength (and/or modulus), and we show from basic theoretical concepts that this relationship is an intrinsic feature of conducting polymers.


2015 ◽  
Vol 35 (8) ◽  
pp. 731-741 ◽  
Author(s):  
Andrzej Katunin ◽  
Katarzyna Krukiewicz

Abstract This article deals with the electrical conductivity of a composite of two polymers, one of which is a conducting polymer, whereas the second is a dielectric. The problem was formulated within the framework of electrical percolation, i.e., the percolation thresholds, which allow for a high electrical conductivity, is under investigation. For this purpose, a numerical model was developed, and its parameters were analyzed and discussed. Based on the determined thresholds, it was possible to evaluate the weight ratios of the conducting-dielectric polymers in a composite. The proposed approach allows for reducing the manufacturing cost of composite material with respect to conducting polymers with simultaneous retaining of high conductance properties of conducting polymers, as well as durability and flexibility of dielectrics.


2020 ◽  
Author(s):  
Daniil Bash ◽  
Yongqiang Cai ◽  
Chellappan Vijila ◽  
Swee Liang Wong ◽  
Yang Xu ◽  
...  

<p>Combining high-throughput experiments with machine learning allows quick optimization of parameter spaces towards achieving target properties. In this study, we demonstrate that machine learning, combined with multi-labeled datasets, can additionally be used for scientific understanding and hypothesis testing. We introduce an automated flow system with high-throughput drop-casting for thin film preparation, followed by fast characterization of optical and electrical properties, with the capability to complete one cycle of learning of fully labeled ~160 samples in a single day. We combine regio-regular poly-3-hexylthiophene with various carbon nanotubes to achieve electrical conductivities as high as 1200 S/cm. Interestingly, a non-intuitive local optimum emerges when 10% of double-walled carbon nanotubes are added with long single wall carbon nanotubes, where the conductivity is seen to be as high as 700 S/cm, which we subsequently explain with high fidelity optical characterization. Employing dataset resampling strategies and graph-based regressions allows us to account for experimental cost and uncertainty estimation of correlated multi-outputs, and supports the proving of the hypothesis linking charge delocalization to electrical conductivity. We therefore present a robust machine-learning driven high-throughput experimental scheme that can be applied to optimize and understand properties of composites, or hybrid organic-inorganic materials.</p>


2015 ◽  
Vol 3 (39) ◽  
pp. 10256-10266 ◽  
Author(s):  
Ivan Puchades ◽  
Colleen C. Lawlor ◽  
Christopher M. Schauerman ◽  
Andrew R. Bucossi ◽  
Jamie E. Rossi ◽  
...  

Electronic-type-separated SWCNTs thin-films were used to demonstrate that the strength of the redox potential of dopants influences their electrical conductivity enhancement.


Sign in / Sign up

Export Citation Format

Share Document