Arsenic exposure from drinking water is associated with decreased gene expression and increased DNA methylation in peripheral blood

2017 ◽  
Vol 321 ◽  
pp. 57-66 ◽  
Author(s):  
Syeda Shegufta Ameer ◽  
Karin Engström ◽  
Mohammad Bakhtiar Hossain ◽  
Gabriela Concha ◽  
Marie Vahter ◽  
...  
2012 ◽  
Vol 25 (11) ◽  
pp. 2333-2339 ◽  
Author(s):  
Huiqi Li ◽  
Karin Engström ◽  
Marie Vahter ◽  
Karin Broberg

2009 ◽  
Vol 184 (2) ◽  
pp. 121-125 ◽  
Author(s):  
Jiao-hua Luo ◽  
Zhi-qun Qiu ◽  
Wei-qun Shu ◽  
Yong-yan Zhang ◽  
Liang Zhang ◽  
...  

Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 2436-2436
Author(s):  
L. Zhou ◽  
J. Opalinska ◽  
D. Sohal ◽  
R. Thompson ◽  
Y. Li ◽  
...  

Abstract Myelodysplasia (MDS) is a clonal hematopoietic disorder that leads to ineffective hematopoiesis and peripheral cytopenias. DNMT inhibitors such as azacytidine have led to clinical responses in patients, though the genes affected by epigenetic alterations are not well known. Whole genome DNA methylation was analyzed by a recently described novel method, The HELP assay (HpaII tiny fragment Enrichment by Ligation-mediated PCR; Khulan et al, Genome Res. 2006 Aug;16(8)) that uses differential methylation specific restriction digestion by HpaII and MspI followed by amplification, two color labeling and cohybridization to quantitatively determine individual promoter island methylation. A whole genome human promoter array (Nimblegen) was used to determine the level of methylation of 25626 gene promoters by calculating HpaII/MspI cut fragment intensity ratio. Peripheral blood leucocytes from 13 patients with MDS were compared to 9 age matched normal and anemic controls. Gene expression analysis was performed using 37K oligo maskless arrays on cDNA obtained from the same samples. Analysis showed that whole genome methylation profiling has greater discriminatory power in separating clusters of MDS samples from normal and anemic controls when compared to gene expression analysis. Unsupervised clustering based on epigenetic profiling demonstrated that only two cases of early MDS clustered with normals as compared to absolutely no separation between MDS and normals with clustering based on gene expression patterns. A high correlation (r=0.88–0.96) was observed between global methylation profiles of matched sets of bone marrow and peripheral blood leucocyte samples from selected patients demonstrating that peripheral blood leucocytes can be a valid surrogate for epigenomic analysis. Further analysis showed that genes consistently aberrantly methylated in MDS included Syk kinase, HOXB3, several histone acetyltranferases and others. Functional analysis by Ingenuity showed that cancer and cell signaling pathways were the most affected by epigenetic silencing. Most interestingly, a large proportion of gene promoters were also aberrantly hypomethylated. These included genes from Ras oncogene family, the CDC42 GTPase, various methyl binding proteins and other proteins mainly encoding for cancer and hematopoiesis functional pathways, thus biologically validating our analysis. Therefore, our data demonstrates that MDS is characterized by distinct epigenetic aberrations that are preserved in peripheral blood leucocytes. These can be the basis of future studies on pathogenesis and diagnosis for this disease and can potentially uncover a new set of therapeutic gene targets.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 848-848
Author(s):  
Allison Mayle ◽  
Grant Anthony Challen ◽  
Deqiang Sun ◽  
Mira Jeong ◽  
Min Luo ◽  
...  

Abstract Abstract 848 DNA methylation is an epigenetic modification in vertebrate genomes critical for regulation of gene expression. DNA methylation is catalyzed by a family of DNA methyltransferase enzymes, Dnmt1, Dnmt3a, and Dnmt3b. Dnmt1 is primarily a maintenance methyltransferase, targeting hemimethylated DNA to reestablish methylation marks after DNA replication. Dnmt3a and Dnmt3b are de novo methyltransferases that are essential for normal embryonic development. In humans, somatic mutations in DNTM3A have been identified in ∼20% of human acute myeloid leukemia (AML) and ∼10% of myelodysplastic syndrome (MDS) patients, but the mechanisms through which these mutations contribute to pathogenesis is not well understood. Congenital mutations in DNMT3B can cause ICF (immunodeficiency, centromeric instability, and facial anomalies) syndrome. These patients exhibit chromosomal instability due to heterochromatin decondensation and demethylation of satellite DNA. Our group has recently reported that Dnmt3a is essential for HSC differentiation (Challen Nature Genetics, 2011). Conditional knockout of Dnmt3a (Dnmt3a-KO) resulted in HSCs that could not sustain peripheral blood generation after serial transplantation, but phenotypically defined HSCs accumulated in the bone marrow. Dnmt3b is also highly expressed in HSCs, but its contribution to gene regulation in hematopoiesis is unclear. Here, we examine the role of Dnmt3b, alone and in combination with Dnmt3a KO, in the regulation of hematopoiesis. We performed conditional ablation of Dnmt3b, as well as Dnmt3a and Dnmt3b simultaneously using the Mx1-cre system. Unlike the Dnmt3a-KO HSCs, loss of Dnmt3b had a minimal impact on blood production. Even after several rounds of transplantation, 3b-KO HSCs performed similarly to WT controls. However, the Dnmt3ab-dKO (double knock-out) peripheral blood contribution was quickly and severely diminished, accompanied by a dramatic accumulation of Dnmt3ab-dKO HSCs in the bone marrow (Figure 1). The dKO phenotype paralleled that of the 3a-KO HSC, but was more extreme. To examine the impact of loss of Dnmt3a and -3b on DNA methylation in HSCs, we performed Whole Genome Bisulfite Sequencing (WGBS) on Dnmt3a-KO, Dnmt3ab- dKO and control HSCs. As we previously found with more limited DNA methylation analysis, loss of Dnmt3a led to both increases and decreases of DNA methylation at distinct genomic regions (Challen, Nature Genetics, 2011). However, loss of both Dnmt3a and -3b primarily resulted in loss of DNA methylation that was much more extensive than that seen in the 3a-KO. In addition, RNAseq of the mutant HSCs revealed increased expression of repetitive elements, inappropriate splicing, and truncation of 3ÕUTRs. To gain insight into the accumulation of Dnmt3ab-dKO HSCs in the bone marrow, we performed a time course analysis of the proliferation and apoptosis status of the HSCs. Every four weeks after transplantation of HSCs, we sacrificed a cohort of 3 control and 3 dKO mice, counted donor derived HSCs in the bone marrow, and analyzed their Ki67 and Annexin V expression. Up to 12 weeks post-transplant, no significant differences are seen in the expression of Ki67 or Annexin V. These data show that while Dnmt3b alone has minimal impact on DNA methylation in HSCs, Dnmt3a and -3b act synergistically to effect gene expression changes that permit HSC differentiation. In the absence of both of these de novo DNA methyltransferases, there is an immediate and extreme shift toward self-renewal of dKO HSCs. The Ki67 and Annexin V expression patterns suggest that a lack of de novo DNA methylation does not affect the proliferation or apoptosis of HSCs, but instead that the accumulation of HSCs and lack of peripheral blood contribution is primarily due to an imbalance between self-renewal and differentiation. By understanding the mechanisms through which Dnmt3a and -3b exert these effects, we should identify genes that are critical for normal hematopoietic differentiation. These genes may serve as targets for therapeutic intervention in malignancies caused by defective DNA methyltransferases. Figure 1: HSC composition of the bone marrow after secondary transplantation of control (left) and double Dnmt3a/3b KO (right) HSCs. After control HSC transplantation, HSCs comprise ∼0.01% of whole bone marrow. After transplantation of dKO HSCs, phenotypically-defined HSCs (KLS CD34–Flk2–) comprise ∼0.48% of bone marrow. Figure 1:. HSC composition of the bone marrow after secondary transplantation of control (left) and double Dnmt3a/3b KO (right) HSCs. After control HSC transplantation, HSCs comprise ∼0.01% of whole bone marrow. After transplantation of dKO HSCs, phenotypically-defined HSCs (KLS CD34–Flk2–) comprise ∼0.48% of bone marrow. Disclosures: No relevant conflicts of interest to declare.


2019 ◽  
Vol 11 (1) ◽  
Author(s):  
Leticia M. Spindola ◽  
Marcos L. Santoro ◽  
Pedro M. Pan ◽  
Vanessa K. Ota ◽  
Gabriela Xavier ◽  
...  

Abstract Background Psychiatric symptomatology during late childhood and early adolescence tends to persist later in life. In the present longitudinal study, we aimed to identify changes in genome-wide DNA methylation patterns that were associated with the emergence of psychopathology in youths from the Brazilian High-Risk Cohort (HRC) for psychiatric disorders. Moreover, for the differentially methylated genes, we verified whether differences in DNA methylation corresponded to differences in mRNA transcript levels by analyzing the gene expression levels in the blood and by correlating the variation of DNA methylation values with the variation of mRNA levels of the same individuals. Finally, we examined whether the variations in DNA methylation and mRNA levels were correlated with psychopathology measurements over time. Methods We selected 24 youths from the HRC who presented with an increase in dimensional psychopathology at a 3-year follow-up as measured by the Child Behavior Checklist (CBCL). The DNA methylation and gene expression data were compared in peripheral blood samples (n = 48) obtained from the 24 youths before and after developing psychopathology. We implemented a methodological framework to reduce the effect of chronological age on DNA methylation using an independent population of 140 youths and the effect of puberty using data from the literature. Results We identified 663 differentially methylated positions (DMPs) and 90 differentially methylated regions (DMRs) associated with the emergence of psychopathology. We observed that 15 DMPs were mapped to genes that were differentially expressed in the blood; among these, we found a correlation between the DNA methylation and mRNA levels of RB1CC1 and a correlation between the CBCL and mRNA levels of KMT2E. Of the DMRs, three genes were differentially expressed: ASCL2, which is involved in neurogenesis; HLA-E, which is mapped to the MHC loci; and RPS6KB1, the gene expression of which was correlated with an increase in the CBCL between the time points. Conclusions We observed that changes in DNA methylation and, consequently, in gene expression in the peripheral blood occurred concurrently with the emergence of dimensional psychopathology in youths. Therefore, epigenomic modulations might be involved in the regulation of an individual’s development of psychopathology.


2017 ◽  
Vol 6 (8) ◽  
pp. 708-725 ◽  
Author(s):  
Jairo Arturo Pinzón-Cortés ◽  
Angelina Perna-Chaux ◽  
Nicolás Steven Rojas-Villamizar ◽  
Angélica Díaz-Basabe ◽  
Diana Carolina Polanía-Villanueva ◽  
...  

Type 2 diabetes mellitus (T2DM) is characterized by oxidative stress that could lead to chronic micro- and macrovascular complications. We hypothesized that some of the target organ damage is mediated by oxidative alterations in epigenetic mechanisms involving DNA methylation (5mC) and DNA hydroxymethylation (5hmC). We analyzed global DNA methylation and hydroxymethylation in peripheral blood cells in well-controlled and poorly controlled patients with T2DM and compared them with healthy controls. We also analyzed microarrays of DNA methylation and gene expression of other important tissues in the context of diabetes from the GEO database repository and then compared these results with our experimental gene expression data. DNA methylation and, more importantly, DNA hydroxymethylation levels were increased in poorly controlled patients compared to well-controlled and healthy individuals. Both 5mC and 5hmC measurements were correlated with the percentage of glycated hemoglobin, indicating a direct impact of hyperglycemia on changes over the epigenome. The analysis of methylation microarrays was concordant, and 5mC levels were increased in the peripheral blood of T2DM patients. However, the DNA methylation levels were the opposite of those in other tissues, such as the pancreas, adipose tissue and skeletal muscle. We hypothesize that a process of DNA oxidation associated with hyperglycemia may explain the DNA demethylation in which the activity of ten-eleven translocation (TET) proteins is not sufficient to complete the process. High levels of glucose lead to cellular oxidation, which triggers the process of DNA demethylation aided by TET enzymes, resulting in epigenetic dysregulation of the damaged tissues.


2008 ◽  
Vol 116 (4) ◽  
pp. 524-531 ◽  
Author(s):  
Angeline S. Andrew ◽  
David A. Jewell ◽  
Rebecca A. Mason ◽  
Michael L. Whitfield ◽  
Jason H. Moore ◽  
...  

2019 ◽  
Vol 39 (5) ◽  
pp. 605-613 ◽  
Author(s):  
Y He ◽  
R Zhang ◽  
J Chen ◽  
J Tan ◽  
M Wang ◽  
...  

Arsenic has been associated with significant effects on human health. Exposure to inorganic arsenic has been associated with the changes in gene expression. Promoter of CDKN1A antisense DNA damage activated RNA (PANDAR) expression is induced by p53 protein and DNA damage response. Here, we investigated whether the ability of arsenic metabolism in individuals affected the expression of PANDAR, DNA damage, and DNA methylation. Levels of gene expression and DNA damage were examined by the quantitative polymerase chain reaction and DNA methylation was measured by the methylation-sensitive high-resolution melting curve. In our study, we demonstrated that arsenic exposure increased PANDAR expression and DNA damage among arsenic smelting plant laborers. The PANDAR expression and DNA damage were positively linked to monomethylarsonic acid % ( R = 0.25, p < 0.05 and R = 0.32, p < 0.01) and negatively linked to dimethylarsinic acid % ( R = −0.21, p < 0.05 and R = −0.31, p < 0.01). Subjects with low primary methylation index had increased levels of DNA damage (51.62 ± 2.96 vs. 60.93 ± 3.10, p < 0.05) and methylation (17.14 (15.88–18.51) vs. 15.83 (14.82–18.00), p < 0.05). Subjects with low secondary methylation index had increased levels of PANDAR expression (4.88 ± 0.29 vs. 4.07 ± 0.23, p < 0.01) and DNA damage (17.38 (15.88–19.29) vs. 15.83 (14.82–17.26), p < 0.01). DNA methylation of PANDAR gene was linked to the regulation of its expression in peripheral blood lymphocytes among laborers ( Y = −2.08 × X + 5.64, p < 0.05). These findings suggested arsenic metabolism ability and exposure affected the expression of PANDAR, DNA damage, and DNA methylation.


Sign in / Sign up

Export Citation Format

Share Document