scholarly journals Effect of diabetes status and hyperglycemia on global DNA methylation and hydroxymethylation

2017 ◽  
Vol 6 (8) ◽  
pp. 708-725 ◽  
Author(s):  
Jairo Arturo Pinzón-Cortés ◽  
Angelina Perna-Chaux ◽  
Nicolás Steven Rojas-Villamizar ◽  
Angélica Díaz-Basabe ◽  
Diana Carolina Polanía-Villanueva ◽  
...  

Type 2 diabetes mellitus (T2DM) is characterized by oxidative stress that could lead to chronic micro- and macrovascular complications. We hypothesized that some of the target organ damage is mediated by oxidative alterations in epigenetic mechanisms involving DNA methylation (5mC) and DNA hydroxymethylation (5hmC). We analyzed global DNA methylation and hydroxymethylation in peripheral blood cells in well-controlled and poorly controlled patients with T2DM and compared them with healthy controls. We also analyzed microarrays of DNA methylation and gene expression of other important tissues in the context of diabetes from the GEO database repository and then compared these results with our experimental gene expression data. DNA methylation and, more importantly, DNA hydroxymethylation levels were increased in poorly controlled patients compared to well-controlled and healthy individuals. Both 5mC and 5hmC measurements were correlated with the percentage of glycated hemoglobin, indicating a direct impact of hyperglycemia on changes over the epigenome. The analysis of methylation microarrays was concordant, and 5mC levels were increased in the peripheral blood of T2DM patients. However, the DNA methylation levels were the opposite of those in other tissues, such as the pancreas, adipose tissue and skeletal muscle. We hypothesize that a process of DNA oxidation associated with hyperglycemia may explain the DNA demethylation in which the activity of ten-eleven translocation (TET) proteins is not sufficient to complete the process. High levels of glucose lead to cellular oxidation, which triggers the process of DNA demethylation aided by TET enzymes, resulting in epigenetic dysregulation of the damaged tissues.

2020 ◽  
Vol 79 (Suppl 1) ◽  
pp. 1360.2-1360
Author(s):  
E. Toussirot ◽  
S. Pasquereau ◽  
C. Vauchy ◽  
Z. Nehme ◽  
D. Wendling ◽  
...  

Background:Axial spondyloarthritis (ax-SpA) corresponds to a group of chronic inflammatory disease mainly affecting the axial skeleton. TNFα and IL-17A have been identified as key inflammatory mediators driving the inflammatory process of ax-SpA. Epigenetics refers to different mechanisms that alter gene expression without involving changes in DNA sequence. The mechanisms of epigenetics include microRNA, histone modifications or DNA methylation. DNA methylation is associated with a repressed chromatin state and inhibition of gene expression. It is recognized that aberrant DNA methylation can result in immune cell autoreactivity.Objectives:Epigenetics have been rarely evaluated in ax-SpA. We previoulsy reported that patients with ankysloing spondylitis (AS) had an imbalance between HAT and HDAC activities. In this study, we aimed to evaluate the global DNA methylation of patients with ax-SpA.Methods:Case-control study (NCT03092583). Patients with radiographic (AS) or non radiographic (nr) ax-SpA (ASAS criteria) and healthy controls (HC) were evaluated. All the patients were biologic naïve and under NSAIDs. Disease activity was evaluated by BASDAI and ASDAS. CD4+T cells and CD14+ monocytes were isolated form peripheral blood and then DNA was extracted (E.Z.N.A. Blood DNA kit, Omega Bio-Tek). Global DNA methylation (5-mC) was determined using MethylAmp global DNA methylation quantification kit (Epigentek) using 150ng of total DNA.Results:25 patients with AS (18 M; mean age ± SEM: 48.9 ± 3.5 y; mean disease duration: 14.9 ± 2.2 y; B27+: 84%), 21 with nr-axSpA (11 M; age: 42 ± 3.3 y; disease duration: 7.9 ± 2.3 y; B27+: 68%) and 11 HC (7 M; age: 48.4 ± 3.9 y) were evaluated. Patients had active disease (BASDAI and ASDAS in AS and nr-axSpA: 5.1 ± 0.4 and 5.4 ± 0.5; 4.7 ± 0.4 and 5 ± 0.4, respectively). In CD4+ T lymphocytes, global DNA methylation was lower in the whole group of patients (AS and nr-ax-SpA) compared to HC (0.91 ± 0.26vs1.08 ± 0.19 % of 5-mC) (NS). Conversely, DNA methylation was higher in monocytes from patients compared to HC (1.43 ± 0.16vs1.15 ± 0.5 % of 5-mC) (NS). When analysing the results between ax-SpA subgroups, an hypomethylation was more evident in the CD4+T lymphocytes from patients with nr-axSpA compared to AS and HC, a result that was not observed in the monocyte subpopulation (Figures).Conclusion:A global DNA hypomethylation is observed in patients with ax-SpA, especially in the nr-axSpA subgroup. These results are more evident in T CD4+ lymphocytes. Additional analysis on a larger series of patients is required to confirm these preliminary results. In addition, we aim to examine the specific DNA methylation status of the TNF promoter gene.References:[1]Toussirot Eet al, PlosOne 2013Figure.global DNA methylation of CD4+ T lymphocytes and monocyctes from patients with ankylosing spondylitis (AS), non radiographic axial spondyloarthritis (nr-ax-SpA) and healthy controls (HC)Disclosure of Interests:None declared


2018 ◽  
Vol 4 (11) ◽  
pp. eaau6986 ◽  
Author(s):  
Lu Wang ◽  
Patrick A. Ozark ◽  
Edwin R. Smith ◽  
Zibo Zhao ◽  
Stacy A. Marshall ◽  
...  

The tet methylcytosine dioxygenase 2 (TET2) enzyme catalyzes the conversion of the modified DNA base 5-methylcytosine to 5-hydroxymethylcytosine. TET2 is frequently mutated or dysregulated in multiple human cancers, and loss of TET2 is associated with changes in DNA methylation patterns. Here, using newly developed TET2-specific antibodies and the estrogen response as a model system for studying the regulation of gene expression, we demonstrate that endogenous TET2 occupies active enhancers and facilitates the proper recruitment of estrogen receptor α (ERα). Knockout of TET2 by CRISPR-CAS9 leads to a global increase of DNA methylation at enhancers, resulting in attenuation of the estrogen response. We further identified a positive feedback loop between TET2 and ERα, which further requires MLL3 COMPASS at these enhancers. Together, this study reveals an epigenetic axis coordinating a transcriptional program through enhancer activation via DNA demethylation.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 2608-2608
Author(s):  
Claudia Gebhard ◽  
Roger Mulet-Lazaro ◽  
Lucia Schwarzfischer ◽  
Dagmar Glatz ◽  
Margit Nuetzel ◽  
...  

Abstract Acute myeloid leukemia (AML) represents a highly heterogeneous myeloid stem cell disorder classified based on various genetic defects. Besides genetic alterations, epigenetic changes are recognized as an additional mechanism contributing to leukemogenesis, but insight into the latter process remains minor. Using a combination of Methyl-CpG-Immunoprecipitation (MCIp-chip) and MALDI-TOF analysis of bisulfite-treated DNA in a cohort of 196 AML patients we previously demonstrated that (cyto)genetically defined AML subtypes, including CBFB-MYH11, AML-ETO, NPM1-mut, CEBPA-mut or IDH1/2-mut subtypes, express specific DNA-methylation profiles (Gebhard et al, Leukemia, 2018). A fraction of AML patients (5/196) displayed a unique abnormal hypermethylation profile that was completely distinct from any other AML subtype. These patients present immature leukemia (FAB M0, M1) with various chromosomal aberrations but very few mutations (e.g. no IDH1/2, KRAS, DNMT3A) that might explain the CpG island methylator phenotype (CIMP) phenotype. The CIMP patients showed high resemblance with a recently reported CEBPA methylated subgroup (Wouters et al, 2007 and Figueroa et al, 2009), which we confirmed by MCIp-chip and MALDI-TOF analysis. To explore the whole range of epigenetic alterations in the CIMP-AML patients we performed in-depth global DNA methylation and gene expression analyses (MCIp-seq and RNA-seq) in 45 AML and 12 CIMP patients from both studies. Principle component analysis and t-distributed stochastic neighbor embedding (t-SNE) revealed that CIMP patients express a unique DNA-methylation and gene-expression signature that separated them from all other AMLs. We could discriminate promoter methylation from non-promoter methylation by selecting MCIp-seq peaks within 3kb around TSS. Promoter hypermethylation was highly associated with repression of genes (PCC = -0.053, p-value = 0.00075). Hypermethylation of non-promoter regions was more strongly associated with upregulation of genes (PCC = 0.046, p-value = 4.613e-06). Interestingly, differentially methylated regions also showed a positive association with myeloid lineage CTCF binding sites (27% vs 18% expected, p-value < 2.2e-16 in a chi-square test of independence). Methylation of CTCF sites causes loss of CTCF binding, which has been reported to disrupt boundaries between so-called topologically associated domains (TADs), allowing enhancers located in a particular TAD to become accessible to genes in adjacent TADs and affect their transcription. Whether this is the case is under investigation. In this study we particularly focused on the role of hypermethylation of promoters in CIMP-AMLs. Promoters of many transcriptional regulators that are involved in the differentiation of myeloid lineages of which several are frequently mutated in AML were hypermethylated and repressed, including CEBPA, CEBPD, IRF8, GATA2, KLF4, MITF or MAFB. Notably, HMGA2, a critical regulator of myeloid progenitor expansion, exhibited the largest degree of CIMP promoter hypermethylation compared to the other AMLs, accompanied by a reduction in gene expression. Moreover, multiple members of the HOXB family and KLF1 (erythroid differentiation) were methylated and repressed as well. In addition, these patients frequently showed hypermethylation of many chromatin factors (e.g. LMNA, CHD7 or TET2). Hypermethylation of the TET2 promoter could result in a loss of maintenance DNA demethylation and therefore successive hypermethylation at CpG islands. We carried out regulome-capture-bisulfite sequencing on CIMP-AMLs compared to other AML samples and normal blood cell controls and confirmed methylation of the same transcription and chromatin factor promoters. We conclude that these leukemias represent very primitive HSCPs which are blocked in differentiation into multiple hematopoietic lineages, due to the absence of regulators of these lineages. Although the underlying cause for the extreme hypermethylation signature is still subject to ongoing studies, the consequence of promoter hypermethylation is silencing of key lineage regulators causing the differentiation arrest in these cells. We argue that these patients may particularly benefit from therapies that revert DNA methylation. Disclosures Ehninger: Cellex Gesellschaft fuer Zellgewinnung mbH: Employment, Equity Ownership; GEMoaB Monoclonals GmbH: Employment, Equity Ownership; Bayer: Research Funding. Thiede:AgenDix: Other: Ownership; Novartis: Honoraria, Research Funding.


Author(s):  
Daniel M. Sapozhnikov ◽  
Moshe Szyf

AbstractAlthough associations between DNA methylation and gene expression were established four decades ago, the causal role of DNA methylation in gene expression remains unresolved. Different strategies to address this question were developed; however, all are confounded and fail to disentangle cause and effect. We developed here a highly effective new method using only deltaCas9(dCas9):gRNA site-specific targeting to physically block DNA methylation at specific targets in the absence of a confounding flexibly-tethered enzymatic activity, enabling examination of the role of DNA methylation per se in living cells. We show that the extensive induction of gene expression achieved by TET/dCas9-based targeting vectors is confounded by DNA methylation-independent activities, inflating the role of DNA methylation in the promoter region. Using our new method, we show that in several inducible promoters, the main effect of DNA methylation is silencing basal promoter activity. Thus, the effect of demethylation of the promoter region in these genes is small, while induction of gene expression by different inducers is large and DNA methylation independent. In contrast, targeting demethylation to the pathologically silenced FMR1 gene targets robust induction of gene expression. We also found that standard CRISPR/Cas9 knockout generates a broad unmethylated region around the deletion, which might confound interpretation of CRISPR/Cas9 gene depletion studies. In summary, this new method could be used to reveal the true extent, nature, and diverse contribution to gene regulation of DNA methylation at different regions.


2021 ◽  
Author(s):  
Tianyu Dong ◽  
Xiaoyan Wei ◽  
Qianting Qi ◽  
Peilei Chen ◽  
Yanqing Zhou ◽  
...  

Abstract Background: Epigenetic regulation plays a significant role in the accumulation of plant secondary metabolites. The terpenoids are the most abundant in the secondary metabolites of plants, iridoid glycosides belong to monoterpenoids which is one of the main medicinal components of R.glutinosa. At present, study on iridoid glycosides mainly focuses on its pharmacology, accumulation and distribution, while the mechanism of its biosynthesis and the relationship between DNA methylation and plant terpene biosynthesis are seldom reports. Results: The research showed that the expression of DXS, DXR, 10HGO, G10H, GPPS and accumulation of iridoid glycosides increased at first and then decreased with the maturity of R.glutinosa, and under different concentrations of 5-azaC, the expression of DXS, DXR, 10HGO, G10H, GPPS and the accumulation of total iridoid glycosides were promoted, the promotion effect of low concentration (15μM-50μM) was more significant, the content of genomic DNA 5mC decreased significantly, the DNA methylation status of R.glutinosa genomes was also changed. DNA demethylation promoted gene expression and increased the accumulation of iridoid glycosides, but excessive demethylation inhibited gene expression and decreased the accumulation of iridoid glycosides. Conclusion: The analysis of DNA methylation, gene expression, and accumulation of iridoid glycoside provides insights into accumulation of terpenoids in R.glutinosa and lays a foundation for future studies on the effects of epigenetics on the synthesis of secondary metabolites.


2019 ◽  
Vol 12 (1) ◽  
Author(s):  
Jennifer A. Smith ◽  
Jeremy Raisky ◽  
Scott M. Ratliff ◽  
Jiaxuan Liu ◽  
Sharon L. R. Kardia ◽  
...  

Abstract Background Epigenetic age acceleration, a measure of biological aging based on DNA methylation, is associated with cardiovascular mortality. However, little is known about its relationship with hypertensive target organ damage to the heart, kidneys, brain, and peripheral arteries. Methods We investigated associations between intrinsic (IEAA) or extrinsic (EEAA) epigenetic age acceleration, blood pressure, and six types of organ damage in a primarily hypertensive cohort of 1390 African Americans from the Genetic Epidemiology Network of Arteriopathy (GENOA) study. DNA methylation from peripheral blood leukocytes was collected at baseline (1996–2000), and measures of target organ damage were assessed in a follow-up visit (2000–2004). Linear regression with generalized estimating equations was used to test for associations between epigenetic age acceleration and target organ damage, as well as effect modification of epigenetic age by blood pressure or sex. Sequential Oligogenic Linkage Analysis Routines (SOLAR) was used to test for evidence of shared genetic and/or environmental effects between epigenetic age acceleration and organ damage pairs that were significantly associated. Results After adjustment for sex, chronological age, and time between methylation and organ damage measures, higher IEAA was associated with higher urine albumin to creatinine ratio (UACR, p = 0.004), relative wall thickness (RWT, p = 0.022), and left ventricular mass index (LVMI, p = 0.007), and with lower ankle-brachial index (ABI, p = 0.014). EEAA was associated with higher LVMI (p = 0.005). Target organ damage associations for all but IEAA with LVMI remained significant after further adjustment for blood pressure and antihypertensive use (p < 0.05). Further adjustment for diabetes attenuated the IEAA associations with UACR and RWT, and adjustment for smoking attenuated the IEAA association with ABI. No effect modification by age or sex was observed. Conclusions Measures of epigenetic age acceleration may help to better characterize the functional mechanisms underlying organ damage from cellular aging and/or hypertension. These measures may act as subclinical biomarkers for damage to the kidney, heart, and peripheral vasculature; however more research is needed to determine whether these relationships remain independent of lifestyle factors and comorbidities.


Epigenetics ◽  
2019 ◽  
Vol 15 (3) ◽  
pp. 294-306 ◽  
Author(s):  
Nicholas D. Johnson ◽  
Luoxiu Huang ◽  
Ronghua Li ◽  
Yun Li ◽  
Yuchen Yang ◽  
...  

2019 ◽  
Vol 31 (3) ◽  
pp. 509 ◽  
Author(s):  
Minli Yu ◽  
Dongfeng Li ◽  
Wanyan Cao ◽  
Xiaolu Chen ◽  
Wenxing Du

Ten–eleven translocation 1 (Tet1) is involved in DNA demethylation in primordial germ cells (PGCs); however, the precise regulatory mechanism remains unclear. In the present study the dynamics of 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) in developing PGCs and the role of Tet1 in PGC demethylation were analysed. Results show that 5mC levels dropped significantly after embryonic Day 4 (E4) and 5hmC levels increased reaching a peak at E5–E5.5. Interestingly, TET1 protein was highly expressed during E5 to E5.5, which showed a consistent trend with 5hmC. The expression of pluripotency-associated genes (Nanog, PouV and SRY-box 2 (Sox2)) and germ cell-specific genes (caveolin 1 (Cav1), piwi-like RNA-mediated gene silencing 1 (Piwi1) and deleted in azoospermia-like (Dazl)) was upregulated after E5, whereas the expression of genes from the DNA methyltransferase family was decreased. Moreover, the Dazl gene was highly methylated in early PGCs and then gradually hypomethylated. Knockdown of Tet1 showed impaired survival and proliferation of PGCs, as well as increased 5mC levels and reduced 5hmC levels. Further analysis showed that knockdown of Tet1 led to elevated DNA methylation levels of Dazl and downregulated gene expression including Dazl. Thus, this study reveals the dynamic epigenetic reprogramming of chicken PGCs invivo and the molecular mechanism of Tet1 in regulating genomic DNA demethylation and hypomethylation of Dazl during PGC development.


2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Minjung Kho ◽  
Wei Zhao ◽  
Scott M. Ratliff ◽  
Farah Ammous ◽  
Thomas H. Mosley ◽  
...  

Abstract Background Hypertension is a major modifiable risk factor for arteriosclerosis that can lead to target organ damage (TOD) of heart, kidneys, and peripheral arteries. A recent epigenome-wide association study for blood pressure (BP) identified 13 CpG sites, but it is not known whether DNA methylation at these sites is also associated with TOD. Methods In 1218 African Americans from the Genetic Epidemiology Network of Arteriopathy (GENOA) study, a cohort of hypertensive sibships, we evaluated the associations between methylation at these 13 CpG sites measured in peripheral blood leukocytes and five TOD traits assessed approximately 5 years later. Results Ten significant associations were found after adjustment for age, sex, blood cell counts, time difference between CpG and TOD measurement, and 10 genetic principal components (FDR q < 0.1): two with estimated glomerular filtration rate (eGFR, cg06690548, cg10601624), six with urinary albumin-to-creatinine ratio (UACR, cg16246545, cg14476101, cg19693031, cg06690548, cg00574958, cg22304262), and two with left ventricular mass indexed to height (LVMI, cg19693031, cg00574958). All associations with eGFR and four associations with UACR remained significant after further adjustment for body mass index (BMI), smoking status, and diabetes. We also found significant interactions between cg06690548 and BMI on UACR, and between 3 CpG sites (cg19693031, cg14476101, and cg06690548) and diabetes on UACR (FDR q < 0.1). Mediation analysis showed that 4.7% to 38.1% of the relationship between two CpG sites (cg19693031 and cg00574958) and two TOD measures (UACR and LVMI) was mediated by blood pressure (Bonferroni-corrected P < 0.05). Mendelian randomization analysis suggests that methylation at two sites (cg16246545 and cg14476101) in PHGDH may causally influence UACR. Conclusions In conclusion, we found compelling evidence for associations between arteriosclerotic traits of kidney and heart and previously identified blood pressure-associated DNA methylation sites. This study may lend insight into the role of DNA methylation in pathological mechanisms underlying target organ damage from hypertension.


Sign in / Sign up

Export Citation Format

Share Document