Dnmt3b Is Dispensable for Hematopoietic Stem Cell Differentiation, but Acts Synergistically with Dnmt3a to Control the Balance Between Self-Renewal and Differentiation

Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 848-848
Author(s):  
Allison Mayle ◽  
Grant Anthony Challen ◽  
Deqiang Sun ◽  
Mira Jeong ◽  
Min Luo ◽  
...  

Abstract Abstract 848 DNA methylation is an epigenetic modification in vertebrate genomes critical for regulation of gene expression. DNA methylation is catalyzed by a family of DNA methyltransferase enzymes, Dnmt1, Dnmt3a, and Dnmt3b. Dnmt1 is primarily a maintenance methyltransferase, targeting hemimethylated DNA to reestablish methylation marks after DNA replication. Dnmt3a and Dnmt3b are de novo methyltransferases that are essential for normal embryonic development. In humans, somatic mutations in DNTM3A have been identified in ∼20% of human acute myeloid leukemia (AML) and ∼10% of myelodysplastic syndrome (MDS) patients, but the mechanisms through which these mutations contribute to pathogenesis is not well understood. Congenital mutations in DNMT3B can cause ICF (immunodeficiency, centromeric instability, and facial anomalies) syndrome. These patients exhibit chromosomal instability due to heterochromatin decondensation and demethylation of satellite DNA. Our group has recently reported that Dnmt3a is essential for HSC differentiation (Challen Nature Genetics, 2011). Conditional knockout of Dnmt3a (Dnmt3a-KO) resulted in HSCs that could not sustain peripheral blood generation after serial transplantation, but phenotypically defined HSCs accumulated in the bone marrow. Dnmt3b is also highly expressed in HSCs, but its contribution to gene regulation in hematopoiesis is unclear. Here, we examine the role of Dnmt3b, alone and in combination with Dnmt3a KO, in the regulation of hematopoiesis. We performed conditional ablation of Dnmt3b, as well as Dnmt3a and Dnmt3b simultaneously using the Mx1-cre system. Unlike the Dnmt3a-KO HSCs, loss of Dnmt3b had a minimal impact on blood production. Even after several rounds of transplantation, 3b-KO HSCs performed similarly to WT controls. However, the Dnmt3ab-dKO (double knock-out) peripheral blood contribution was quickly and severely diminished, accompanied by a dramatic accumulation of Dnmt3ab-dKO HSCs in the bone marrow (Figure 1). The dKO phenotype paralleled that of the 3a-KO HSC, but was more extreme. To examine the impact of loss of Dnmt3a and -3b on DNA methylation in HSCs, we performed Whole Genome Bisulfite Sequencing (WGBS) on Dnmt3a-KO, Dnmt3ab- dKO and control HSCs. As we previously found with more limited DNA methylation analysis, loss of Dnmt3a led to both increases and decreases of DNA methylation at distinct genomic regions (Challen, Nature Genetics, 2011). However, loss of both Dnmt3a and -3b primarily resulted in loss of DNA methylation that was much more extensive than that seen in the 3a-KO. In addition, RNAseq of the mutant HSCs revealed increased expression of repetitive elements, inappropriate splicing, and truncation of 3ÕUTRs. To gain insight into the accumulation of Dnmt3ab-dKO HSCs in the bone marrow, we performed a time course analysis of the proliferation and apoptosis status of the HSCs. Every four weeks after transplantation of HSCs, we sacrificed a cohort of 3 control and 3 dKO mice, counted donor derived HSCs in the bone marrow, and analyzed their Ki67 and Annexin V expression. Up to 12 weeks post-transplant, no significant differences are seen in the expression of Ki67 or Annexin V. These data show that while Dnmt3b alone has minimal impact on DNA methylation in HSCs, Dnmt3a and -3b act synergistically to effect gene expression changes that permit HSC differentiation. In the absence of both of these de novo DNA methyltransferases, there is an immediate and extreme shift toward self-renewal of dKO HSCs. The Ki67 and Annexin V expression patterns suggest that a lack of de novo DNA methylation does not affect the proliferation or apoptosis of HSCs, but instead that the accumulation of HSCs and lack of peripheral blood contribution is primarily due to an imbalance between self-renewal and differentiation. By understanding the mechanisms through which Dnmt3a and -3b exert these effects, we should identify genes that are critical for normal hematopoietic differentiation. These genes may serve as targets for therapeutic intervention in malignancies caused by defective DNA methyltransferases. Figure 1: HSC composition of the bone marrow after secondary transplantation of control (left) and double Dnmt3a/3b KO (right) HSCs. After control HSC transplantation, HSCs comprise ∼0.01% of whole bone marrow. After transplantation of dKO HSCs, phenotypically-defined HSCs (KLS CD34–Flk2–) comprise ∼0.48% of bone marrow. Figure 1:. HSC composition of the bone marrow after secondary transplantation of control (left) and double Dnmt3a/3b KO (right) HSCs. After control HSC transplantation, HSCs comprise ∼0.01% of whole bone marrow. After transplantation of dKO HSCs, phenotypically-defined HSCs (KLS CD34–Flk2–) comprise ∼0.48% of bone marrow. Disclosures: No relevant conflicts of interest to declare.

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1406-1406
Author(s):  
Matthew J Boyer ◽  
Feng Xu ◽  
Hui Yu ◽  
Tao Cheng

Abstract DNA methylation is an epigenetic means of gene regulation and is carried out by a family of methyltransferases of which DNMT1 acts to maintain methylation marks following DNA replication and DNMT3a and DNMT3b methylate DNA de novo. DNMT3b has been shown to be essential for mammalian development and necessary for differentiation of germline and neural progenitor cells. Mutations of DNMT3b in humans lead to a rare autosomal recessive disorder characterized by immunodeficiency, centromeric instability, and facial abnormalities. We have shown by real-time, RT-PCR that DNMT3b mRNA is uniquely over-expressed by approximately 30-fold in immunophenotypically-defined longterm repopulating hematopoietic stem cells (HSCs) that are CD34−lineage−c-kit+Sca-1+ as compared to progenitor and differentiated cell types within the bone marrow and with respect to the other members of the DNMT family, namely DNMT1 and DNMT3a. To determine DNMT3b’s function in HSCs competitive bone marrow transplantation was undertaken. Isolated lineage− enriched bone marrow cells were transduced with a retroviral backbone based on the Murine Stem Cell Virus (MSCV) carrying either GFP and a short, hairpin RNA (shRNA) targeting DNMT3b or GFP alone. Following transduction 1×105 GFP+ cells along with 1×105 competitor cells were transplanted into 9.5 Gray irradiated congenic recipients. Two months following transplantation mice receiving bone marrow cells transduced with DNMT3b shRNA showed a significantly lower engraftment of donor cells as a percentage of total competitor cell engraftment in the peripheral blood as compared to those receiving cells transduced with GFP alone (24.8 vs 3.7, p<0.05) which persisted at 3 months (22.8 vs 1.5, p<0.05). Similarly, within the donor derviced cells in the peripheral blood there was a lower percentage of myeloid (CD11b+) cells at 2 and 3 months in the recipients of DNMT3b shRNA transduced cells as compared to controls. However there was no observed difference in the percentage of peripheral B (CD45R+) or T (CD3+) cells within the donor-derived cells. To determine the mechanism behind the observed engraftment defect with DNMT3b knockdown we cultured GFP+ transduced bone marrow cells in vitro with minimal cytokine support. As a control for our targeting methodology we also transduced bone marrow cells from mice harboring two floxed DNMT3b alleles with a MSCV carrying Cre recombinase and GFP. While lineage− bone marrow cells transduced with GFP alone increased 10-fold in number over two weeks of culture, cells in which DNMT3b was down regulated by shRNA or Cre-mediated recombination only doubled. Culture of lineage− bone marrow cells in methylcellulose medium by the colony-forming cell (CFC) assay revealed increases in the granulocytic and total number of colonies with DNMT3b knockdown or Cre-mediated recombination of DNMT3b similar to the increased myeloid engraftment of DNMT3b shRNA transduced cells observed 1 month following competitive bone marrow transplantation. However when 5,000 of these cells from the first CFC assay were sub-cultured there was a significant loss of colony forming ability within all lineages when DNMT3b was targeted by shRNA or Cre-mediated recombination. Taken together with the decreased engraftment of DNMT3b shRNA cells following competitive bone marrow transplantation, the observed limited proliferation in liquid culture and loss of colony forming ability during serial CFC assays is suggestive of a self-renewal defect of HSCs in the absence of DNMT3b, that was previously only reported in the absence of both DNMT3a and DNMT3b. Further elucidation of this proposed self-renewal defect is being undertaken and results of ongoing studies including long-term culture initiating cell (LTC-IC) assays and identification of genomic sites of DNA methylation within different hematopoietic subsets will also be presented.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 608-608
Author(s):  
Matthew J. Walter ◽  
Dong Shen ◽  
Jin Shao ◽  
Li Ding ◽  
Marcus Grillot ◽  
...  

Abstract Abstract 608 Myelodysplastic syndrome (MDS) genomes are characterized by global DNA hypomethylation with concomitant hypermethylation of gene promoter regions compared to CD34+ cells from normal bone marrow samples. Currently, the underlying mechanism of altered DNA methylation in MDS genomes and the critical target genes affected by methylation remain largely unknown. The methylation of CpG dinucleotides in humans is mediated by DNA methyltransferases, including DNMT1, DNMT3A, and DNMT3B. DNMT3A and DNMT3B are the dominant DNA methyltransferases involved in de novo DNA methylation and act independent of replication, whereas DNMT1 acts predominantly during replication to maintain hemimethylated DNA. The function of these proteins in cancer cells is less well defined. Our group recently found that DNMT3A mutations are common in de novo acute myeloid leukemia (62/281 cases, 22%) and are associated with poor survival (Ley, et al, unpublished), providing a rationale for examining the mutation status of DNMT3A in MDS patients. MDS cases (n=150) were classified according to the French-American-British (FAB) system. The patients included refractory anemia (RA; n=67), RA with ringed sideroblasts (RARS; n=5), RA with excess blasts (RAEB; n=72), and RA with excess blasts in transformation (RAEB-T; n=6). The median International Prognostic Scoring System (IPSS) score was 1 (range 0–3), and the median myeloblast count was 4 (range 0–28%). We designed and validated 28 primer pairs covering the coding sequences and splice sites of all 23 exons for DNMT3A. Paired DNA samples were obtained from the bone marrow (tumor) and skin (normal) of each patient so that somatic mutations could be distinguished from inherited variants/polymorphisms. 17,120 reads were produced by capillary sequencing, providing at least 1X coverage for 82.6% of the target sequence (low/no coverage was obtained for 2 out of 28 amplicons). A semiautomated analysis pipeline was used to identify sequence variants and we restricted our analysis to nonsynonymous and splice site nucleotide changes. All mutations were confirmed by independent PCR and sequencing. We identified nonsynonymous DNMT3A mutations in 12/150 bone marrow samples (8% of cases). All the mutations were heterozygous (10 missense, 1 nonsense, 1 frameshift) and were computationally predicted (by SIFT and/or PolyPhen2) to have deleterious functional consequences. DNMT3A mRNA is expressed in normal CD34+ bone marrow cells and was expressed in all MDS patient samples tested (n=28), independent of mutation status. There was no difference in the expression level of total DNMT3A mRNA in CD34+ cells harvested from mutant (n=3) vs. non-mutant MDS samples (n=25). Amino acid R882, located in the methyltransferase domain of DNMT3A, was the most common mutation site, accounting for 4/12 mutations. The clinical characteristics of the 12 patients with DNMT3A mutations were similar to those of the 138 patients without mutations. Specifically, DNMT3A mutations were present in all MDS FAB subtypes (excluding CMML which was not tested) and in patients with IPSS scores ranging from 0–3. Mutations were not associated with a specific karyotype. In addition, there was no correlation between mutation detection and the myeloblast count of the banked bone marrow specimen, suggesting that mutations were not missed due to the cellular heterogeneity in the samples. We compared the overall (OS) and event-free survival (EFS) of the 12 patients with DNMT3A mutations vs. 138 patients without a mutation and observed a significantly worse OS in patients with mutations (p=0.02), with a median survival of 433 and 945 days, respectively. There was a trend towards worse EFS for patients with mutations (p=0.05). A multivariate analysis for outcomes could not be performed due to the small sample size of patients with mutations, indicating that a larger cohort from a clinical trial will be needed to properly address the affect of DNMT3A mutations on outcomes. The small sample size also precluded us from addressing whether the response to the hypomethylating agents 5-azacytidine or decitabine correlated with the mutation status of DNMT3A. If validated in larger cohort studies, we propose that DNMT3A mutation status could help risk stratify de novo MDS patients for more aggressive treatment early in their disease course. Disclosures: Westervelt: Novartis: Honoraria; Celgene: Honoraria, Speakers Bureau. DiPersio:Genzyme: Honoraria.


2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Manal Fawzy Ghozlan ◽  
Botheina Ahmed Thabet Farweez ◽  
Nesma Ahmed Safwat ◽  
Noha Bassiouny Hassan ◽  
Walaa Ali Elsalakawy

Abstract Background Acute myeloid leukaemia (AML) is a clonal haematopoietic disease characterized by the proliferation of immature blast cells in the bone marrow and peripheral blood. Autophagy is an inherent cellular route by which waste macromolecules are engulfed within autophagosomes prior to their fusion with cytoplasmic lysosomes for degradation. The BECN1 gene encodes the Beclin-1 protein, which regulates autophagy. Few reports have investigated BECN1 gene expression and its value in AML patients. Results This randomized case-control study included 50 newly diagnosed AML patients, in addition to 20 subjects as a control group. BECN1 gene expression was assessed using real-time quantitative polymerase chain reaction (qRT-PCR). The median level of BECN1 gene expression in AML patients was 0.41 (IQR 0.29–1.03) in comparison to 1.12 (IQR 0.93–1.26) in the control group (P = 0.000). Seventy-two percent of AML patients showed reduced BECN1 gene expression, which was highly significantly associated with intermediate and adverse cytogenetic risk. Reduced BECN1 gene expression was associated with older age, higher total leukocyte counts, the presence of peripheral blood blast cells, a higher percentage of bone marrow blast cells, and higher expression of CD34 and CD117. FLT3-ITD mutation was detected in 14 patients (38.9%), all of whom showed reduced BECN1 gene expression (P = 0.006). BECN1 gene expression was also reduced in non-responder AML patients, with a highly statistically significant difference (P = 0.002). Conclusion A reduction in BECN1 gene expression might indicate a poor prognosis in adult Egyptian patients with de novo AML. Decreased BECN1 gene expression is associated with a higher risk of resistance to treatment. Targeting autophagy pathways may help in the treatment of AML patients.


2017 ◽  
Vol 24 (2) ◽  
pp. 171-185 ◽  
Author(s):  
Gonca Bayraktar ◽  
Michael R. Kreutz

DNMT3A and 3B are the main de novo DNA methyltransferases (DNMTs) in the brain that introduce new methylation marks to non-methylated DNA in postmitotic neurons. DNA methylation is a key epigenetic mark that is known to regulate important cellular processes in neuronal development and brain plasticity. Accumulating evidence disclosed rapid and dynamic changes in DNA methylation of plasticity-relevant genes that are important for learning and memory formation. To understand how DNMTs contribute to brain function and how they are regulated by neuronal activity is a prerequisite for a deeper appreciation of activity-dependent gene expression in health and disease. This review discusses the functional role of de novo methyltransferases and in particular DNMT3A1 in the adult brain with special emphasis on synaptic plasticity, memory formation, and brain disorders.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 835-835 ◽  
Author(s):  
Grant A. Challen ◽  
Jonathan S Berg ◽  
Margaret A. Goodell

Abstract Abstract 835 DNA methylation is one of the major epigenetic modifications in the vertebrate genome and is catalyzed by the DNA methyltransferase enzymes Dnmt1, Dnmt3a and Dnmt3b. We observed a dynamic expression profile of Dnmt3a and Dnmt3b in the hematopoietic system with both enzymes expressed at exponentially higher levels in hematopoietic stem cells (HSCs) compared to progenitors and differentiated cells and hypothesized that some of the unique characteristics of HSCs were epigenetically regulated by Dnmt3a and Dnmt3b. To study this, we crossed Dnmt3a and -3b conditional knock-out (KO) mice to Mx1-cre mice to generate inducible single- and double-KO (dKO) mice. We performed competitive transplantation of HSCs (side-population+c-Kit+Lineage-Sca-1+ = SPKLS) from these mice along with wild-type whole bone marrow competitor and induced deletion of the Dnmt3's in the donor cells by sequential pIpC injections in the wild-type recipients. No dramatic differences were observed in primary recipients in the absence of other hematopoietic perturbation, however when we re-transplanted Dnmt3a- and Dnmt3b-KO HSCs into secondary recipients, they exhibited surprisingly high peripheral blood reconstitution compared to control HSCs (>4-fold increase in engraftment). This was reflected in the bone marrow of these mice with a corresponding >4-fold expansion of the HSC pool (phenotypically defined by any of SPKLS; CD34-Flk2-KLS; CD150+CD48-KLS) with virtually all of these cells being derived from the Dnmt3a- and Dnmt3b-KO donor HSCs. Consistent with a previous study, we observed a decline in functional output of Dnmt3a/3b-dKO HSCs in secondary transplants in terms of peripheral blood chimerism, but surprisingly these mice also exhibited a modest expansion of the HSC pool (∼2-fold), the majority of which were derived from donor Dnmt3a/3b-dKO HSCs. In subsequent tertiary and quaternary transplantation, Dnmt3 single-KO HSCs remained highly superior in peripheral blood engraftment capacity relative to control HSCs and Dnmt3a/3b-dKO HSCs (Figure 1), although the expansion of the HSC pool in all Dnmt3-KOs continued to varying degrees. This enhanced HSC activity appears to be a cell autonomous mechanism as purified Dnmt3-KO SPKLS cells from transplanted mice have much greater hematopoietic colony forming potential in vitro compared to control HSCs on a per cell basis. However the observed HSC expansion does not appear attributable to either enhanced proliferation of Dnmt3-KO HSCs or more resistance to apoptosis. The serially-transplanted Dnmt3-KO HSCs are not overtly transformed, in that the levels of differentiated blood cells are still normal and the mice appear to be healthy. This may be akin to a pre-malignant state seen in human myelodysplastic syndrome. We have performed microarray expression profiling of serially-transplanted Dnmt3-KO HSCs and identified several candidate genes which are currently being investigated as the mechanism for HSC expansion. Our data suggest ablation of de novo DNA methylation in HSCs uncouples normal self-renewal and differentiation. These studies present further evidence for the contribution of epigenetic regulation to stem cell activity and provide a tantalizing link between potential aberrant methylation in HSCs contributing to leukemic transformation. Disclosures: No relevant conflicts of interest to declare.


2007 ◽  
Vol 204 (4) ◽  
pp. 715-722 ◽  
Author(s):  
Yuko Tadokoro ◽  
Hideo Ema ◽  
Masaki Okano ◽  
En Li ◽  
Hiromitsu Nakauchi

DNA methylation is an epigenetic modification essential for development. The DNA methyltransferases Dnmt3a and Dnmt3b execute de novo DNA methylation in gastrulating embryos and differentiating germline cells. It has been assumed that these enzymes generally play a role in regulating cell differentiation. To test this hypothesis, we examined the role of Dnmt3a and Dnmt3b in adult stem cells. CD34−/low, c-Kit+, Sca-1+, lineage marker− (CD34− KSL) cells, a fraction of mouse bone marrow cells highly enriched in hematopoietic stem cells (HSCs), expressed both Dnmt3a and Dnmt3b. Using retroviral Cre gene transduction, we conditionally disrupted Dnmt3a, Dnmt3b, or both Dnmt3a and Dnmt3b (Dnmt3a/Dnmt3b) in CD34− KSL cells purified from mice in which the functional domains of these genes are flanked by two loxP sites. We found that Dnmt3a and Dnmt3b function as de novo DNA methyltransferases during differentiation of hematopoietic cells. Unexpectedly, in vitro colony assays and in vivo transplantation assays showed that both myeloid and lymphoid lineage differentiation potentials were maintained in Dnmt3a-, Dnmt3b-, and Dnmt3a/Dnmt3b-deficient HSCs. However, Dnmt3a/Dnmt3b-deficient HSCs, but not Dnmt3a- or Dnmt3b-deficient HSCs, were incapable of long-term reconstitution in transplantation assays. These findings establish a critical role for DNA methylation by Dnmt3a and Dnmt3b in HSC self-renewal.


Blood ◽  
2017 ◽  
Vol 130 (Suppl_1) ◽  
pp. 790-790
Author(s):  
Yotaro Ochi ◽  
Ayana Kon ◽  
Kenichi Yoshida ◽  
Keisuke Kataoka ◽  
Masahiro Marshall Nakagawa ◽  
...  

Abstract Cohesin is a multimeric protein complex, which has been initially implicated in the cohesion of replicated sister chromatids but more recently shown to be involved in the long-range regulation of gene expression by stabilizing 3-dememsional structure of the genomic DNA. Recently, multiple components of the cohesin complex has been shown to be a recurrent target of somatic mutations in various myeloid malignancies, in which STAG2 is most frequently mutated and undergoes loss-of-function. However, the leukemogenic mechanism of mutated- STAG2 has not been fully understood, although recent studies have reported deregulated differentiation and enhanced self-renewal of STAG2 -mutated stem cells. To investigate the functional role of STAG2 in leukemogenesis as well as normal hematopoiesis, we generated Stag2 conditional knockout (cKO) mice with an Mx1 -cre allele, in which Stag2 deletion was induced by polyIC injection. When assessed in the peripheral blood of 12 to 20 week-old mice, the complete blood count showed no significant changes between Stag2 cKO mice and controls. No morphological alterations were observed in the peripheral blood as well as in the bone marrow. However, in the spleen, the extramedullary hematopoiesis was evident, exhibiting increased myeloid progenitors and erythroblasts. In repeated methylcellulose cultures, Stag2 deficient BM cells showed an enhanced serial replating capacity, suggesting an increased self-renewal potential in Stag2 deficient hematopoietic stem cells (HSCs) in vitro. Flow cytometry of bone marrow cells revealed increased numbers of hematopoietic stem and progenitor cells (HSPCs) defined as Lineage−Sca-1+Kit+(LSK) cells in Stag2 cKO mice compared with controls. Within the myeloid progenitor (MP) compartment, we observed increased common myeloid progenitors (CMPs), while decreased megakaryocyte/erythroid (MEPs) and common lymphoid progenitors (CLPs), compared to controls. Moreover, CD11b+Gr-1+ mature myeloid cells were significantly increased in the bone marrow of Stag2 cKO mice. These results suggest that Stag2 deficiency causes myeloid skewing. In competitive bone marrow transplantation assays assessing the reconstitution potential, Stag2 cKO-derived cells showed reduced chimerism in the peripheral blood compared to wild-type mice-derived cells. However, the reduced chimerism of Stag2 cKO-derived cells was largely confined to B-lymphocytes showing a severe reduction, while the chimerism of Stag2 cKO-derived myeloid cells was not affected compared to controls. In the bone marrow, by contrast, the chimerism of Stag2 cKO cells was not significantly changed, but rather tended to show increased numbers in the LSK, CMP and granulocyte/macrophage progenitor (GMP) fractions, while the MEP and CLP fractions were reduced. These results suggest that Stag2 deficiency could enhance the self-renewal capacity of HSCs in vivo, but Stag2 -deleted cells may not uniformly contribute to all hematopoietic cell fractions probably due to the impaired differentiation of these HSCs. Next, we assessed the effect of Stag2 -deficiency on gene expression, where RNA sequencing of Stag2 -deleted HSPCs revealed a subset of genes differentially expressed between Stag2 WT and cKO cells. Including key myeloid-specific regulators, these genes were considered to be potential gene targets of Stag2, deregulation of which is implicated in the abnormal hematopoiesis of Stag2 cKO mice. Given that the cohesin complex is known to be involved in the establishing and maintaining DNA accessibility, we also assessed the global chromatin accessibility by assays for transposase accessible chromatin with sequencing (ATAC-seq) of Stag2 -deleted HSPCs. Of interest, chromatin accessibility in Stag2 -deleted cells was increased for genes implicated in myeloid differentiation, whereas reduced for those in lymphoid differentiation. Motif analysis of more accessible regions in Stag2 -deleted cells revealed an enrichment of the binding site for the transcription factor Runx1, which is known to regulate HSC differentiation. Our results demonstrate that Stag2 loss leads to the impaired hematopoietic differentiation and enhances the self-renewal potential of HSCs through the modulation of chromatin accessibility and consequent abnormal gene expression, possibly contributing to leukemogenesis. Disclosures Takaori-Kondo: Novartis: Honoraria; Bristol-Myers Squibb: Honoraria; Celgene: Research Funding; Janssen Pharma: Honoraria; Pfizer​: Honoraria.


2021 ◽  
Vol 22 (7) ◽  
pp. 3735
Author(s):  
Guillaume Velasco ◽  
Damien Ulveling ◽  
Sophie Rondeau ◽  
Pauline Marzin ◽  
Motoko Unoki ◽  
...  

DNA methylation (DNAme) profiling is used to establish specific biomarkers to improve the diagnosis of patients with inherited neurodevelopmental disorders and to guide mutation screening. In the specific case of mendelian disorders of the epigenetic machinery, it also provides the basis to infer mechanistic aspects with regard to DNAme determinants and interplay between histone and DNAme that apply to humans. Here, we present comparative methylomes from patients with mutations in the de novo DNA methyltransferases DNMT3A and DNMT3B, in their catalytic domain or their N-terminal parts involved in reading histone methylation, or in histone H3 lysine (K) methylases NSD1 or SETD2 (H3 K36) or KMT2D/MLL2 (H3 K4). We provide disease-specific DNAme signatures and document the distinct consequences of mutations in enzymes with very similar or intertwined functions, including at repeated sequences and imprinted loci. We found that KMT2D and SETD2 germline mutations have little impact on DNAme profiles. In contrast, the overlapping DNAme alterations downstream of NSD1 or DNMT3 mutations underlines functional links, more specifically between NSD1 and DNMT3B at heterochromatin regions or DNMT3A at regulatory elements. Together, these data indicate certain discrepancy with the mechanisms described in animal models or the existence of redundant or complementary functions unforeseen in humans.


2019 ◽  
Vol 31 (8) ◽  
pp. 1386 ◽  
Author(s):  
Fatma Uysal ◽  
Gokhan Akkoyunlu ◽  
Saffet Ozturk

DNA methylation plays key roles in epigenetic regulation during mammalian spermatogenesis. DNA methyltransferases (DNMTs) function in de novo and maintenance methylation processes by adding a methyl group to the fifth carbon atom of the cytosine residues within cytosine–phosphate–guanine (CpG) and non-CpG dinucleotide sites. Azoospermia is one of the main causes of male infertility, and is classified as obstructive (OA) or non-obstructive (NOA) azoospermia based on histopathological characteristics. The molecular background of NOA is still largely unknown. DNA methylation performed by DNMTs is implicated in the transcriptional regulation of spermatogenesis-related genes. The aim of the present study was to evaluate the cellular localisation and expression levels of the DNMT1, DNMT3A and DNMT3B proteins, as well as global DNA methylation profiles in testicular biopsy samples obtained from men with various types of NOA, including hypospermatogenesis (hyposperm), round spermatid (RS) arrest, spermatocyte (SC) arrest and Sertoli cell-only (SCO) syndrome. In the testicular biopsy samples, DNMT1 expression and global DNA methylation levels decreased gradually from the hyposperm to SCO groups (P<0.05). DNMT3A expression was significantly decreased in the RS arrest, SC arrest and SCO groups compared with the hyposperm group (P<0.05). DNMT3B expression was significantly lower in the RS arrest and SCO groups than in the hyposperm group (P<0.05). Although both DNMT1 and DNMT3A were localised in the cytoplasm and nucleus of the spermatogenic cells, staining for DNMT3B was more intensive in the nucleus of spermatogenic cells. In conclusion, the findings suggest that significant changes in DNMT expression and global DNA methylation levels in spermatogenic cells may contribute to development of male infertility in the NOA groups. Further studies are needed to determine the molecular biological effects of the altered DNMT expression and DNA methylation levels on development of male infertility.


2016 ◽  
Vol 113 (32) ◽  
pp. 9111-9116 ◽  
Author(s):  
Adam J. Bewick ◽  
Lexiang Ji ◽  
Chad E. Niederhuth ◽  
Eva-Maria Willing ◽  
Brigitte T. Hofmeister ◽  
...  

In plants, CG DNA methylation is prevalent in the transcribed regions of many constitutively expressed genes (gene body methylation; gbM), but the origin and function of gbM remain unknown. Here we report the discovery that Eutrema salsugineum has lost gbM from its genome, to our knowledge the first instance for an angiosperm. Of all known DNA methyltransferases, only CHROMOMETHYLASE 3 (CMT3) is missing from E. salsugineum. Identification of an additional angiosperm, Conringia planisiliqua, which independently lost CMT3 and gbM, supports that CMT3 is required for the establishment of gbM. Detailed analyses of gene expression, the histone variant H2A.Z, and various histone modifications in E. salsugineum and in Arabidopsis thaliana epigenetic recombinant inbred lines found no evidence in support of any role for gbM in regulating transcription or affecting the composition and modification of chromatin over evolutionary timescales.


Sign in / Sign up

Export Citation Format

Share Document