Activation of the TGF-β1/Smad signaling by KIF2C contributes to the malignant phenotype of thyroid carcinoma cells

2021 ◽  
Vol 73 ◽  
pp. 101655
Author(s):  
Qiuyu Lin ◽  
Qianle Qi ◽  
Sen Hou ◽  
Zhen Chen ◽  
Nan Jiang ◽  
...  
Tumor Biology ◽  
2015 ◽  
Vol 37 (1) ◽  
pp. 989-998 ◽  
Author(s):  
Siyuan Ma ◽  
Qingzhu Wang ◽  
Xiaojun Ma ◽  
Lina Wu ◽  
Feng Guo ◽  
...  

2019 ◽  
Vol 19 (7) ◽  
pp. 561-570 ◽  
Author(s):  
Hamidreza Maroof ◽  
Soussan Irani ◽  
Armin Arianna ◽  
Jelena Vider ◽  
Vinod Gopalan ◽  
...  

Background: The clinical pathological features, as well as the cellular mechanisms of miR-195, have not been investigated in thyroid carcinoma. Objective: The aim of this study is to identify the interactions of vascular endothelial growth factor (VEGF), p53 and miR-195 in thyroid carcinoma. The clinical and pathological features of miR-195 were also investigated. Methods: The expression levels of miR-195 were identified in 123 primary thyroid carcinomas, 40 lymph nodes with metastatic papillary thyroid carcinomas and seven non-neoplastic thyroid tissues (controls) as well as two thyroid carcinoma cell lines, B-CPAP (from metastasizing human papillary thyroid carcinoma) and MB-1 (from anaplastic thyroid carcinoma), by the real-time polymerase chain reaction. Using Western blot and immunofluorescence, the effects of exogenous miR-195 on VEGF-A and p53 protein expression levels were examined. Then, cell cycle and apoptosis assays were performed to evaluate the roles of miR-195 in cell cycle progression and apoptosis. Results: The expression of miR-195 was downregulated in majority of the papillary thyroid carcinoma tissue as well as in cells. Introduction of exogenous miR-195 resulted in downregulation of VEGF-A and upregulation of p53 protein expressions. Upregulation of miR-195 in thyroid carcinoma cells resulted in cell cycle arrest. Moreover, we demonstrated that miR-195 inhibits cell cycle progression by induction of apoptosis in the thyroid carcinoma cells. Conclusion: Our findings showed for the first time that miR-195 acts as a tumour suppressor and regulates cell cycle progression and apoptosis by targeting VEGF-A and p53 in thyroid carcinoma. The current study exhibited that miR-195 might represent a potential therapeutic target for patients with thyroid carcinomas having aggressive clinical behaviour.


Sign in / Sign up

Export Citation Format

Share Document