scholarly journals Nasal allergy-like symptoms aggravated by ozone exposure in a concentration-dependent manner in guinea pigs

Toxicology ◽  
2004 ◽  
Vol 199 (1) ◽  
pp. 73-83
Author(s):  
Mariko K Iijima ◽  
Takahiro Kobayashi
2017 ◽  
Vol 11 (1) ◽  
pp. 12-22
Author(s):  
José de Ondarza

Background:Ozone exposure rapidly leads to bacterial death, making ozone an effective disinfectant in food industry and health care arena. However, microbial defenses may moderate this effect and play a role in the effective use of oxidizing agents for disinfection.Serratia marcescensis an opportunistic pathogen, expressing genes differentially during infection of a human host. A better understanding of regulatory systems that control expression ofSerratia’s virulence genes and defenses is therefore valuable.Objective:Here, we investigated the role of pigmentation and catalase inSerratia marcescenson survival to ozone exposure.Method:Pigmented and non-pigmented strains ofSerratia marcescenswere cultured to exponential or stationary phase and exposed to 5 ppm of gaseous ozone for 2.5 – 10 minutes. Survival was calculated via plate counts. Catalase activity was measured photometrically and tolerance to hydrogen peroxide was assayed by disk-diffusion.Results:Exposure ofS. marcescensto 5 ppm gaseous ozone kills > 90% of cells within 10 minutes in a time and concentration-dependent manner. Although pigmentedSerratia(grown at 28°C) survived ozonation better than unpigmentedSerratia(grown at 35°C), non-pigmented mutant strains ofSerratiahad similar ozone survival rates, catalase activity and H2O2tolerance as wild type strains. Rather, ozone survival and catalase activity were elevated in 6 hour cultures compared to 48 hour cultures.Conclusion:Our studies did not bear out a role for prodigiosin in ozone survival. Rather, induction of oxidative stress responses during exponential growth increased both catalase activity and ozone survival in both pigmented and unpigmentedS. marcescens.


1995 ◽  
Vol 268 (6) ◽  
pp. L879-L884 ◽  
Author(s):  
A. C. Myers ◽  
B. J. Undem

Studies were carried out to evaluate the mechanism by which neurotransmission through airway parasympathetic ganglia may be modulated during immediate hypersensitivity reactions. Guinea pigs were passively sensitized by injection of guinea pig serum containing high-titer anti-ovalbumin antibodies. Intracellular recordings were obtained from intrinsic parasympathetic ganglion neurons from the right mainstem bronchus in vitro. Ovalbumin (10 micrograms/ml) elicited a membrane potential depolarization and changes in membrane resistance in bronchial ganglion neurons from passively sensitized guinea pigs. Histamine mimicked the depolarizing effect of ovalbumin in a concentration-dependent manner (0.1–10 microM) and caused a transient increase and decrease in membrane resistance. Pyrilamine, a histamine H1-receptor antagonist, inhibited the histamine-induced membrane depolarization and decrease in resistance. By contrast, blocking histamine H2 and H3 receptors did not inhibit histamine-induced depolarization. Pyrilamine also reduced the antigen-induced depolarization of ganglion neurons, demonstrating a role for histamine H1 receptors in this response. The data provide evidence that the antigen-induced depolarization of airway ganglion neurons is secondary to an antigen-antibody interaction on intrinsic mast cells and the consequential effect of histamine on H1 receptors. These studies demonstrate that histamine released during an immediate hypersensitivity reaction has direct effects on airway parasympathetic nerves.


2021 ◽  
Vol 12 ◽  
Author(s):  
Qin Yang ◽  
Qing Qing Tan ◽  
Chang Jun Lan ◽  
Bo Zhen Lv ◽  
Gui Mei Zhou ◽  
...  

KCNQ5 is suggestively associated with myopia, but its specific role in the myopic process has not been studied further. The aim of this study was to investigate the expression of potassium channel gene KCNQ5 and the changes of K+ microenvironment within the retina of form deprivation myopia (FDM) guinea pigs. A total of 60 guinea pigs were randomly divided into the normal control (NC) group, the self-control (SC) group, and the form-deprivation (FD) group for different treatments. Molecular assays and immunohistochemistry (IHC) were conducted to measure the expression and distribution of KCNQ5-related gene and protein in the retina. We determined the K+ concentration in the retina. In addition, the possible effects of form deprivation on potassium ionic currents and the pharmacological sensitivity of KCNQ5 activator Retigabine and inhibitor XE991 to the M-current in RPE cells were investigated using the patch-clamp technique. As a result, FD eyes exhibited more myopic refraction and longer AL. The mRNA and protein levels of KCNQ5 significantly decreased in the FD eyes, but the K+ concentration increased. In addition, the M-type K+ current [IK(M)] density decreased in FD RPE cells, and were activated or inhibited in a concentration-dependent manner due to the addition of Retigabine or XE991. Overall, KCNQ5 was significantly downregulated in the retina of FD guinea pigs, which may be associated with the increasing K+ concentration, decreasing IK(M) density, and elongating ocular axis. It suggested that KCNQ5 may play a role in the process of myopia, and the intervention of potassium channels may contribute to the prevention and control of myopia.


2014 ◽  
Vol 84 (1-2) ◽  
pp. 79-91 ◽  
Author(s):  
Amin F. Majdalawieh ◽  
Hyo-Sung Ro

Background: Foam cell formation resulting from disrupted macrophage cholesterol efflux, which is triggered by PPARγ1 and LXRα, is a hallmark of atherosclerosis. Sesamin and sesame oil exert anti-atherogenic effects in vivo. However, the exact molecular mechanisms underlying such effects are not fully understood. Aim: This study examines the potential effects of sesamin (0, 25, 50, 75, 100 μM) on PPARγ1 and LXRα expression and transcriptional activity as well as macrophage cholesterol efflux. Methods: PPARγ1 and LXRα expression and transcriptional activity are assessed by luciferase reporter assays. Macrophage cholesterol efflux is evaluated by ApoAI-specific cholesterol efflux assays. Results: The 50 μM, 75 μM, and 100 μM concentrations of sesamin up-regulated the expression of PPARγ1 (p< 0.001, p < 0.001, p < 0.001, respectively) and LXRα (p = 0.002, p < 0.001, p < 0.001, respectively) in a concentration-dependent manner. Moreover, 75 μM and 100 μM concentrations of sesamin led to 5.2-fold (p < 0.001) and 6.0-fold (p<0.001) increases in PPAR transcriptional activity and 3.9-fold (p< 0.001) and 4.2-fold (p < 0.001) increases in LXR transcriptional activity, respectively, in a concentration- and time-dependent manner via MAPK signaling. Consistently, 50 μM, 75 μM, and 100 μM concentrations of sesamin improved macrophage cholesterol efflux by 2.7-fold (p < 0.001), 4.2-fold (p < 0.001), and 4.2-fold (p < 0.001), respectively, via MAPK signaling. Conclusion: Our findings shed light on the molecular mechanism(s) underlying sesamin’s anti-atherogenic effects, which seem to be due, at least in part, to its ability to up-regulate PPARγ1 and LXRα expression and transcriptional activity, improving macrophage cholesterol efflux. We anticipate that sesamin may be used as a therapeutic agent for treating atherosclerosis.


1992 ◽  
Vol 68 (05) ◽  
pp. 570-576 ◽  
Author(s):  
Mary A Selak

SummaryWe have previously demonstrated that human neutrophil cathepsin G is a strong platelet agonist that binds to a specific receptor. This work describes the effect of neutrophil elastase on cathepsin G-induced platelet responses. While platelets were not activated by high concentrations of neutrophil elastase by itself, elastase enhanced aggregation, secretion and calcium mobilization induced by low concentrations of cathepsin G. Platelet aggregation and secretion were potentiated in a concentration-dependent manner by neutrophil elastase with maximal responses observable at 200 nM. Enhancement was observed when elastase was preincubated with platelets for time intervals of 10–60 s prior to addition of a low concentration of cathepsin G and required catalytically-active elastase since phenylmethanesulphonyl fluoride-inhibited enzyme failed to potentiate cell activation. Neutrophil elastase potentiation of platelet responses induced by low concentrations of cathepsin G was markedly inhibited by creatine phosphate/creatine phosphokinase and/or indomethacin, indicating that the synergism between elastase and cathepsin G required the participation of ADP and thromboxane A2. On the other hand, platelet responses were not attenuated by the PAF antagonist BN 52021, signifying that PAF-acether did not play a role in elastase potentiation. At higher concentrations porcine pancreatic elastase exhibits similar effects to neutrophil elastase, demonstrating that the effect of elastase was not unique to the neutrophil protease. While neutrophil elastase failed to alter the ability of cathepsin G to hydrolyze a synthetic chromogenic substrate, preincubation of platelets with elastase increased the apparent affinity of cathepsin G binding to platelets. In contrast to their effect on cathepsin G-induced platelet responses, neither neutrophil nor pancreatic elasatse potentiated aggregation or dense granule release initiated by ADP, PAF-acether, arachidonic acid or U46619, a thromboxane A2 mimetic. Moreover, unlike its effect on cathepsin G, neutrophil elastase inhibited thrombin-induced responses. The current observations demonstrate that elastase can potentiate platelet responses mediated by low concentrations of cathepsin G, suggesting that both enzymes may function synergistically to activate platelets under conditions where neutrophil degranulation occurs.


1993 ◽  
Vol 69 (03) ◽  
pp. 286-292 ◽  
Author(s):  
Che-Ming Teng ◽  
Feng-Nien Ko ◽  
Inn-Ho Tsai ◽  
Man-Ling Hung ◽  
Tur-Fu Huang

SummaryTrimucytin is a potent platelet aggregation inducer isolated from Trimeresurus mucrosquamatus snake venom. Similar to collagen, trimucytin has a run of (Gly-Pro-X) repeats at the N-terminal amino acids sequence. It induced platelet aggregation, ATP release and thromboxane formation in rabbit platelets in a concentration-dependent manner. The aggregation was not due to released ADP since it was not suppressed by creatine phosphate/creatine phosphokinase. It was not either due to thromboxane A2 formation because indomethacin and BW755C did not have any effect on the aggregation even thromboxane B2 formation was completely abolished by indomethacin. Platelet-activating factor (PAF) was not involved in the aggregation since a PAF antagonist, kadsurenone, did not affect. However, RGD-containing peptide triflavin inhibited the aggregation, but not the release of ATP, of platelets induced by trimucytin. Indomethacin, mepacrine, prostaglandin E1 and tetracaine inhibited the thromboxane B2 formation of platelets caused by collagen and trimucytin. Forskolin and sodium nitroprusside inhibited both platelet aggregation and ATP release, but not the shape change induced by trimucytin. In quin-2 loaded platelets, the rise of intracellular calcium concentration caused by trimucytin was decreased by 12-O-tetradecanoyl phorbol-13 acetate, imipramine, TMB-8 and indomethacin. In the absence of extracellular calcium, both collagen and trimucytin caused no thromboxane B2 formation, but still induced ATP release which was completely blocked by R 59022. Inositol phosphate formation in platelets was markedly enhanced by trimucytin and collagen. MAB1988, an antibody against platelet membrane glycoprotein Ia, inhibited trimucytinand collagen-induced platelet aggregation and ATP release. However, trimucytin did not replace the binding of 125I-labeled MAB1988 to platelets. Platelets pre-exposed to trimucytin were resistant to the second challenge with trimucytin itself or collagen. It is concluded that trimucytin may activate collagen receptors on platelet membrane, and cause aggregation and release mainly through phospholipase C-phosphoinositide pathway.


2018 ◽  
Author(s):  
Luke Jordan ◽  
Nathan Wittenberg

This is a comprehensive study of the effects of the four major brain gangliosides (GM1, GD1b, GD1a, and GT1b) on the adsorption and rupture of phospholipid vesicles on SiO2 surfaces for the formation of supported lipid bilayer (SLB) membranes. Using quartz crystal microbalance with dissipation monitoring (QCM-D) we show that gangliosides GD1a and GT1b significantly slow the SLB formation process, whereas GM1 and GD1b have smaller effects. This is likely due to the net ganglioside charge as well as the positions of acidic sugar groups on ganglioside glycan head groups. Data is included that shows calcium can accelerate the formation of ganglioside-rich SLBs. Using fluorescence recovery after photobleaching (FRAP) we also show that the presence of gangliosides significantly reduces lipid diffusion coefficients in SLBs in a concentration-dependent manner. Finally, using QCM-D and GD1a-rich SLB membranes we measure the binding kinetics of an anti-GD1a antibody that has similarities to a monoclonal antibody that is a hallmark of a variant of Guillain-Barre syndrome.


1998 ◽  
Vol 38 (6) ◽  
pp. 147-154 ◽  
Author(s):  
Hideo Utsumi ◽  
Sang-Kuk Han ◽  
Kazuhiro Ichikawa

Generation of hydroxyl radicals, one of the major active species in ozonation of water was directly observed with a spin-trapping/electron spin resonance (ESR) technique using 5,5-dimethyl-1-pyrrolineN-oxide (DMPO) as a spin-trapping reagent. Hydroxyl radical were trapped with DMPO as a stable radical, DMPO-OH. Eighty μM of ozone produced 1.08 X 10-6M of DMPO-OH, indicating that 1.4% of •OH is trapped with DMPO. Generation rate of DMPO-OH was determined by ESR/stopped-flow measurement. Phenol derivatives increased the amount and generation rate of DMPO-OH, indicating that phenol derivatives enhance •OH generation during ozonation of water. Ozonation of 2,3-, 2,5-, 2,6-dichlorophenol gave an ESR spectra of triplet lines whose peak height ratio were 1:2:1. ESR parameters of the triplet lines agreed with those of the corresponding dichloro-psemiquinone radical. Ozonation of 2,4,5- and 2,4,6-trichlorophenol gave the same spectra as those of 2,5- and 2,6-dichlorophenol, respectively, indicating that a chlorine group in p-position is substituted with a hydroxy group during ozonation. Amounts of the radical increased in an ozone-concentration dependent manner and were inhibited by addition of hydroxyl radical scavengers. These results suggest that p-semiquinone radicals are generated from the chlorophenols by hydroxyl radicals during ozonation. The p-semiquinone radicals were at least partly responsible for enhancements of DMPO-OH generation.


2019 ◽  
Vol 26 (7) ◽  
pp. 494-501 ◽  
Author(s):  
Sameer Suresh Bhagyawant ◽  
Dakshita Tanaji Narvekar ◽  
Neha Gupta ◽  
Amita Bhadkaria ◽  
Ajay Kumar Gautam ◽  
...  

Background: Diabetes and hypertension are the major health concern and alleged to be of epidemic proportions. This has made it a numero uno subject at various levels of investigation. Glucosidase inhibitor provides the reasonable option in treatment of Diabetes Mellitus (DM) as it specifically targets post prandial hyperglycemia. The Angiotensin Converting Enzyme (ACE) plays an important role in hypertension. Therefore, inhibition of ACE in treatment of elevated blood pressure attracts special interest of the scientific community. Chickpea is a food legume and seeds contain carbohydrate binding protein- a lectin. Some of the biological properties of this lectin hitherto been elucidated. Methods: Purified by ion exchange chromatography, chickpea lectin was tested for its in vitro antioxidant, ACE-I inhibitory and anti-diabetic characteristic. Results: Lectin shows a characteristic improvement over the synthetic drugs like acarbose (oral anti-diabetic drug) and captopril (standard antihypertensive drug) when, their IC50 values are compared. Lectin significantly inhibited α-glucosidase and α-amylase in a concentration dependent manner with IC50 values of 85.41 ± 1.21 ҝg/ml and 65.05 ± 1.2 µg/ml compared to acarbose having IC50 70.20 ± 0.47 value of µg/ml and 50.52 ± 1.01 µg/ml respectively. β-Carotene bleaching assay showed antioxidant activity of lectin (72.3%) to be as active as Butylated Hydroxylanisole (BHA). In addition, lectin demonstrated inhibition against ACE-I with IC50 value of 57.43 ± 1.20 µg/ml compared to captopril. Conclusion: Lectin demonstrated its antioxidant character, ACE-I inhibition and significantly inhibitory for α-glucosidase and α-amylase seems to qualify as an anti-hyperglycemic therapeutic molecule. The biological effects of chickpea lectin display potential for reducing the parameters of medically debilitating conditions. These characteristics however needs to be established under in vivo systems too viz. animals through to humans.


Sign in / Sign up

Export Citation Format

Share Document