Zearalenone nephrotoxicity: DNA fragmentation, apoptotic gene expression and oxidative stress protected by Lactobacillus plantarum MON03

Toxicon ◽  
2020 ◽  
Vol 175 ◽  
pp. 28-35 ◽  
Author(s):  
Jalila Ben Salah-Abbès ◽  
Hela Belgacem ◽  
Khawla Ezzdini ◽  
Mosaad A. Abdel-Wahhab ◽  
Samir Abbès
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Noha H. Habashy ◽  
Ahmad S. Kodous ◽  
Marwa M. Abu-Serie

AbstractCarbon tetrachloride (CCl4) is an abundant environmental pollutant that can generate free radicals and induce oxidative stress in different human and animal organs like the kidney, lung, brain, and spleen, causing toxicity. The present study evaluated the alleviative mechanism of the isolated polyphenolic fraction from seedless (pulp and skin) black Vitis vinifera (VVPF) on systemic oxidative and necroinflammatory stress in CCl4-intoxicated rats. Here, we found that the administration of VVPF to CCl4-intoxicated rats for ten days was obviously ameliorated the CCl4-induced systemic elevation in ROS, NO and TBARS levels, as well as MPO activity. Also, it upregulated the cellular activities of the enzymatic (SOD, and GPx) and non-enzymatic (TAC and GSH) antioxidants. Furthermore, the gene expression of the ROS-related necroinflammatory mediators (NF-κB, iNOS, COX-2, and TNF-α) in the kidney, brain, and spleen, as well as IL-1β, and IL-8 in the lung were greatly restored. The histopathological studies confirmed these biochemical results and showed a noticeable enhancing effect in the architecture of the studied organs after VVPF intake. Thus, this study indicated that VVPF had an alleviative effect on CCl4-induced necroinflammation and oxidative stress in rat kidney, lung, brain, and spleen via controlling the ROS/NF-κB pathway.


PLoS ONE ◽  
2011 ◽  
Vol 6 (12) ◽  
pp. e28777 ◽  
Author(s):  
Mary C. Vázquez ◽  
Talía del Pozo ◽  
Fermín A. Robledo ◽  
Gonzalo Carrasco ◽  
Leonardo Pavez ◽  
...  

2018 ◽  
Vol 19 (11) ◽  
pp. 3349 ◽  
Author(s):  
Jin Namkoong ◽  
Dale Kern ◽  
Helen Knaggs

Since the skin is the major protective barrier of the body, it is affected by intrinsic and extrinsic factors. Environmental influences such as ultraviolet (UV) irradiation, pollution or dry/cold air are involved in the generation of radical oxygen species (ROS) and impact skin aging and dermal health. Assessment of human skin gene expression and other biomarkers including epigenetic factors are used to evaluate the biological/molecular activities of key compounds in cosmetic formulas. The objective of this study was to quantify human gene expression when epidermal full-thickness skin equivalents were exposed to: (a) a mixture of betaine, pentylene glycol, Saccharomyces cerevisiae and Rhodiola rosea root extract (BlendE) for antioxidant, skin barrier function and oxidative stress (with hydrogen peroxide challenge); and (b) a mixture of Narcissus tazetta bulb extract and Schisandra chinensis fruit extract (BlendIP) for various biomarkers and microRNA analysis. For BlendE, several antioxidants, protective oxidative stress biomarkers and many skin barrier function parameters were significantly increased. When BlendE was evaluated, the negative impact of the hydrogen peroxide was significantly reduced for the matrix metalloproteinases (MMP 3 and MMP 12), the skin aging and oxidative stress biomarkers, namely FBN2, ANXA1 and HGF. When BlendIP was tested for cell proliferation and dermal structural components to enhance the integrity of the skin around the eyes: 8 growth factors, 7 signaling, 7 structural/barrier function and 7 oxidative stress biomarkers were significantly increased. Finally, when BlendIP was tested via real-time RT-PCR for microRNA expression: miR-146a, miR-22, miR155, miR16 and miR21 were all significantly increased over control levels. Therefore, human skin gene expression studies are important tools to assess active ingredient compounds such as plant extract blends to advance dermal hypotheses toward validating cosmetic formulations with botanical molecules.


Nutrients ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 1871
Author(s):  
Karolina Chodkowska ◽  
Anna Ciecierska ◽  
Kinga Majchrzak ◽  
Piotr Ostaszewski ◽  
Tomasz Sadkowski

Gamma-oryzanol (GO) is a popular supplement for performance horses, dogs, and humans. Previous studies indicated that GO supplementation decreases creatine kinase activity and lactate level after exercise and may affect oxidative stress in Thoroughbred horses. GO may change genes expression in equine satellite cells (ESC). The purpose of this study was to evaluate the effect of GO on miRNA, gene expression, oxidative stress, and cell damage and viability in differentiating ESC pretreated with hydrogen peroxide (H2O2). ESCs were obtained from a young horse’s skeletal muscle. ESCs were pre-incubated with GO (24 h) and then exposed to H2O2 for one hour. For the microRNA and gene expression assessment, the microarray technique was used. Identified miRNAs and genes were validated using real time-quantitative polymerase chain reaction. Several tests related to cell viability, cell damage, and oxidative stress were performed. The microarray analysis revealed differences in 17 miRNAs and 202 genes between GO-treated and control ESC. The tests related to apoptosis, cell viability, and oxidative stress showed that GO affects these processes to varying degrees. Our results suggest that GO can change miRNA and gene expression and may impact the processes involved in tissue repairing after an injury.


Renal Failure ◽  
2015 ◽  
Vol 37 (2) ◽  
pp. 192-197 ◽  
Author(s):  
Aydın Güçlü ◽  
Nilüfer Yonguç ◽  
Yavuz Dodurga ◽  
Gülşah Gündoğdu ◽  
Zuhal Güçlü ◽  
...  

2017 ◽  
Vol 53 (2) ◽  
pp. 118 ◽  
Author(s):  
Vahid Khanjarsim ◽  
Jamshid Karimi ◽  
Iraj Khodadadi ◽  
Adel Mohammadalipour ◽  
Mohammad Taghi Goodarzi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document