A novel in vivo model for predicting myelotoxicity of chemotherapeutic agents using IL-3/GM-CSF transgenic humanized mice

2017 ◽  
Vol 281 ◽  
pp. 152-157 ◽  
Author(s):  
R. Ito ◽  
D. Nagai ◽  
N. Igo ◽  
Y. Okuda ◽  
K. Sekine ◽  
...  
Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 3723-3723
Author(s):  
Zheng Hu ◽  
Yong-Guang Yang

Abstract Abstract 3723 An animal model supporting human erythropoiesis will be highly valuable for assessing the biological function of human RBCs under physiological and disease settings, and for evaluating protocols of in vitro RBC differentiation from human embryonic stem cells. Although immunodeficient mice on the NOD background have been widely used to study human hematopoietic stem cell function in vivo, the successful use of these mice in the study of human erythropoiesis and RBC function has not been reported. We have previously shown that co-transplantation of human fetal thymic tissue (under renal capsule) and CD34+ fetal liver cells (FLCs; i.v.) in NOD/SCID or NOD/SCID/γc−/− mice results in the development of multilineage human hematopoietic cells. Here, we analyzed human RBC reconstitution in these humanized mice. Although a large number of human erythrocytes, which consisted predominantly of immature nucleated erythrocytes, were detected in the bone marrow of human fetal thymus/CD34+ FLC-grafted mice, human RBCs were undetectable in blood of these mice, even in those with nearly full human chimerism in peripheral blood mononuclear cells (PBMCs). Recipient mouse macrophage-mediated rejection is, at least, one of the major mechanisms responsible for the lack of human RBCs in these mice, as human RBCs became detectable in blood following macrophage depletion and disappeared again after withdrawal of treatment. Furthermore, treatment with human erythropoietin (EPO) and human IL-3 significantly increased human RBC reconstitution in mice that were depleted of macrophages. Like the human RBCs developed in the humanized mice, exogenously injected normal human RBCs were also rapidly rejected by macrophages in NOD/SCID mice. Taken together, our data demonstrate that human RBCs are highly susceptible to rejection by macrophages in immunodeficient mice. Thus, strategies for preventing human RBC rejection by macrophages are required for using immunodeficient mice as an in vivo model to study human erythropoiesis and RBC function. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
1999 ◽  
Vol 93 (11) ◽  
pp. 3617-3623 ◽  
Author(s):  
Nidal Mahgoub ◽  
Brigit R. Taylor ◽  
Michelle M. Le Beau ◽  
Mary Gratiot ◽  
Katrin M. Carlson ◽  
...  

Therapy-related acute myeloid leukemia and myelodysplastic syndrome (t-AML and MDS) are severe late complications of treatment with genotoxic chemotherapeutic agents. Children with neurofibromatosis type 1 (NF1) are predisposed to malignant myeloid disorders that are associated with inactivation of the NF1 tumor suppressor gene in the leukemic clone. Recent clinical data suggest that NF1 might be also associated with an increased risk of t-AML after treatment with alkyating agents. To test this hypothesis, we administered cyclophosphamide or etoposide to cohorts of wild-type and heterozygousNf1 knockout mice. Cyclophosphamide exposure cooperated strongly with heterozygous inactivation of Nf1 in myeloid leukemogenesis, while etoposide did not. Somatic loss of the normalNf1 allele correlated with clinical disease and was more common in 129/Sv mice than in 129/Sv × C57BL/6 animals. Leukemic cells showing loss of heterozygosity at Nf1 retained a structural allele on each chromosome 11 homolog. These studies establish a novel in vivo model of alkylator-induced myeloid malignancy that will facilitate mechanistic and translational studies.


2004 ◽  
Vol 123 (6) ◽  
pp. 1182-1191 ◽  
Author(s):  
María José Escámez ◽  
Marta García ◽  
Fernando Larcher ◽  
Alvaro Meana ◽  
Evangelina Muñoz ◽  
...  

2019 ◽  
Vol 2 (2) ◽  
pp. e201800195 ◽  
Author(s):  
Masashi Matsuda ◽  
Rintaro Ono ◽  
Tomonori Iyoda ◽  
Takaho Endo ◽  
Makoto Iwasaki ◽  
...  

The immune system encompasses acquired and innate immunity that matures through interaction with microenvironmental components. Cytokines serve as environmental factors that foster functional maturation of immune cells. Although NOD/SCID/IL2rgKO (NSG) humanized mice support investigation of human immunity in vivo, a species barrier between human immune cells and the mouse microenvironment limits human acquired as well as innate immune function. To study the roles of human cytokines in human acquired and innate immune cell development, we created NSG mice expressing hIL-7 and hIL-15. Although hIL-7 alone was not sufficient for supporting human NK cell development in vivo, increased frequencies of human NK cells were confirmed in multiple organs of hIL-7 and hIL-15 double knockin (hIL-7xhIL-15 KI) NSG mice engrafted with human hematopoietic stem cells. hIL-7xhIL-15 KI NSG humanized mice provide a valuable in vivo model to investigate development and function of human NK cells.


Viruses ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 256 ◽  
Author(s):  
Ekaterina Maidji ◽  
Mary Moreno ◽  
Jose Rivera ◽  
Pheroze Joshi ◽  
Sofiya Galkina ◽  
...  

Although antiretroviral therapy (ART) greatly suppresses HIV replication, lymphoid tissues remain a sanctuary site where the virus may replicate. Tracking the earliest steps of HIV spread from these cellular reservoirs after drug cessation is pivotal for elucidating how infection can be prevented. In this study, we developed an in vivo model of HIV persistence in which viral replication in the lymphoid compartments of humanized mice was inhibited by the HIV reverse transcriptase inhibitor 4′-ethynyl-2-fluoro-2′-deoxyadenosine (EFdA) to very low levels, which recapitulated ART-suppression in HIV-infected individuals. Using a combination of RNAscope in situ hybridization (ISH) and immunohistochemistry (IHC), we quantitatively investigated the distribution of HIV in the lymphoid tissues of humanized mice during active infection, EFdA suppression, and after drug cessation. The lymphoid compartments of EFdA-suppressed humanized mice harbored very rare transcription/translation-competent HIV reservoirs that enable viral rebound. Our data provided the visualization and direct measurement of the early steps of HIV reservoir expansion within anatomically intact lymphoid tissues soon after EFdA cessation and suggest a strategy to enhance therapeutic approaches aimed at eliminating the HIV reservoir.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 2533-2533
Author(s):  
Elizabeth Bulaeva ◽  
Davide Pellacani ◽  
Naoto Nakamichi ◽  
Philip Beer ◽  
Colin Hammond ◽  
...  

Background: Current evidence suggests that genetic and epigenetic abnormalities drive the development of human Acute Myeloid Leukemias (AMLs). However, whether these are sufficient to establish a permanent, self-sustaining AML population, and the potential role of shared perturbed downstream pathways is unknown. We hypothesized that a modest upregulated expression of MYC might play such a role given its commonly increased expression in many AML patients' cells. To test this hypothesis, we assessed the dynamics and types of cells produced in sublethally irradiated NOD-Rag1-/--IL2Rγc-/-(NRG) mice transgenically producing human IL3, GM-CSF and SCF (NRG-3GS mice) following their transplantation with freshly isolated subsets of normal CD34+ cord blood (CB) cells that were first lentivirally transduced with a human MYC cDNA. Results: FACS and Western blot analyses indicated this produced a 2 to 5-fold increase in MYC mRNA and protein levels in MYC-transduced CD34+ CB cells, and 21/22 NRG-3GS mice injected with ≥6,500 of these cells developed a fatal human AML population within 7 weeks. Histological analysis of their bone marrow and spleen cells showed both contained a prominent human CD123+CD33+CD15±CD34-CD14-CD19-CD3- blast population. Additional limiting dilution transplants showed that both the CD34+CD38- cells (enriched for hematopoietic stem cells) and the more differentiated CD34+ GMPs were similarly highly susceptible (at frequencies of 1/14 and 1/46, respectively) and, in both cases, generated progeny that could initiate serially transplantable leukemias with the same phenotypic and transcriptomic features. Comparison to normal CB cells indicated these most closely resembled GMPs, and comparison to pediatric AML patient samples indicated a similarity to myelomonocytic leukemias with enhanced MYC expression. Interestingly, 14 sublethally irradiated NRG mice (the parental strain not producing human 3GS) transplanted with matched aliquots of CD34+ MYC-transduced cells regenerated a normal spectrum of CD19+ lymphoid cells, CD14+ and CD15+ GM cells and readily detectable CD34+ cells for up to 32 weeks of follow-up with no evidence of leukemogenesis. However, transfer of these regenerated human cells into secondary NRG-3GS mice, even after this extended period, enabled their rapid production of a lethal human AML in all 5 mice tested. In contrast, matched aliquots transplanted into 5 NRG recipients produced declining grafts of normal cells. This finding was then exploited to determine which growth factors were responsible for activating the AML program by transplanting NRG mice with CD34+ CB cells transduced with MYC and just a single growth factor, or all 3 as a positive control. In this set of experiments, a lethal human AML was obtained when MYC was paired with human IL3 or GM-CSF (or all 3 together), but not with SCF (or no growth factors). Conclusion: We report here a new in vivo model of MYC-induced human myeloid leukemogenesis that produces a serially transplantable AML closely resembling human pediatric myelomonocytic leukemias with elevated MYC expression. The rapidity, consistency, and high frequency of this transformation process obtained by transducing late granulopoietic as well as early types of normal human CD34+ progenitor cells makes this system highly attractive for future mechanistic and therapeutic testing experiments. The discovery that MYC deregulation alone generates a stable "latent program" that can be rapidly activated by exposure to exogenous growth factors typical of inflammatory states also raises intriguing questions about the potential role of such events in the genesis of AML populations that arise in patients. Disclosures Beer: Karus therapeutics Ltd.: Employment.


2021 ◽  
Vol 12 ◽  
Author(s):  
Ryutaro Iwabuchi ◽  
Keigo Ide ◽  
Kazutaka Terahara ◽  
Ryota Wagatsuma ◽  
Rieko Iwaki ◽  
...  

Humanized mouse models are attractive experimental models for analyzing the development and functions of human dendritic cells (DCs) in vivo. Although various types of DC subsets, including DC type 3 (DC3s), have been identified in humans, it remains unclear whether humanized mice can reproduce heterogeneous DC subsets. CD14, classically known as a monocyte/macrophage marker, is reported as an indicator of DC3s. We previously observed that some CD14+ myeloid cells expressed CD1c, a pan marker for bona fide conventional DC2 (cDC2s), in humanized mouse models in which human FLT3L and GM-CSF genes were transiently expressed using in vivo transfection (IVT). Here, we aimed to elucidate the identity of CD14+CD1c+ DC-like cells in humanized mouse models. We found that CD14+CD1c+ cells were phenotypically different from cDC2s; CD14+CD1c+ cells expressed CD163 but not CD5, whereas cDC2s expressed CD5 but not CD163. Furthermore, CD14+CD1c+ cells primed and polarized naïve CD4+ T cells toward IFN-γ+ Th1 cells more profoundly than cDC2s. Transcriptional analysis revealed that CD14+CD1c+ cells expressed several DC3-specific transcripts, such as CD163, S100A8, and S100A9, and were clearly segregated from cDC2s and monocytes. When lipopolysaccharide was administered to the humanized mice, the frequency of CD14+CD1c+ cells producing IL-6 and TNF-α was elevated, indicating a pro-inflammatory signature. Thus, humanized mice are able to sustain development of functional CD14+CD1c+ DCs, which are equivalent to DC3 subset observed in humans, and they could be useful for analyzing the development and function of DC3s in vivo.


Blood ◽  
1999 ◽  
Vol 93 (11) ◽  
pp. 3617-3623 ◽  
Author(s):  
Nidal Mahgoub ◽  
Brigit R. Taylor ◽  
Michelle M. Le Beau ◽  
Mary Gratiot ◽  
Katrin M. Carlson ◽  
...  

Abstract Therapy-related acute myeloid leukemia and myelodysplastic syndrome (t-AML and MDS) are severe late complications of treatment with genotoxic chemotherapeutic agents. Children with neurofibromatosis type 1 (NF1) are predisposed to malignant myeloid disorders that are associated with inactivation of the NF1 tumor suppressor gene in the leukemic clone. Recent clinical data suggest that NF1 might be also associated with an increased risk of t-AML after treatment with alkyating agents. To test this hypothesis, we administered cyclophosphamide or etoposide to cohorts of wild-type and heterozygousNf1 knockout mice. Cyclophosphamide exposure cooperated strongly with heterozygous inactivation of Nf1 in myeloid leukemogenesis, while etoposide did not. Somatic loss of the normalNf1 allele correlated with clinical disease and was more common in 129/Sv mice than in 129/Sv × C57BL/6 animals. Leukemic cells showing loss of heterozygosity at Nf1 retained a structural allele on each chromosome 11 homolog. These studies establish a novel in vivo model of alkylator-induced myeloid malignancy that will facilitate mechanistic and translational studies.


2020 ◽  
Vol 76 (2) ◽  
pp. 123-131
Author(s):  
Johannes Troebs ◽  
Claudia Asam ◽  
Eric Pion ◽  
Lukas Prantl ◽  
Thiha Aung ◽  
...  

BACKGROUND: The ability to evaluate tumor development within experimental oncology is of upmost importance. However, determining tumor volumes in 3D in vivo tumor models is challenging. The chick chorioallantoic membrane (CAM) model represents an optimized xenograft model that surpasses many disadvantages that are inherent to rodent models and provides the opportunity of real-time monitoring of tumor growth. OBJECTIVE: The objective of this study was to introduce a new method that enables monitoring of tumor growth within the CAM model throughout the course of the experiment. METHODS: Sarcoma cell lines and sarcoma primary tumors were grafted onto the CAM of fertilized chicken eggs. A digital microscope (Keyence VHX-6000) was used for 3D volume monitoring before and after tumor excision and compared it to tumor weight. RESULTS: Accuracy of tumor volumes was validated through correlation with tumor weight. In and ex ovo tumor volumes correlated significantly with tumor weight values. CONCLUSIONS: The described method can be used to assess the effects of chemotherapeutic agents on the growth of tumors that have been grafted onto the CAM and further advance personalized cancer therapy. In summary, we established a promising protocol that enables in vivo real-time tracking of tumor growth in the CAM model using a digital microscope.


Blood ◽  
2008 ◽  
Vol 112 (13) ◽  
pp. 5161-5170 ◽  
Author(s):  
Ellen Weisberg ◽  
Johannes Roesel ◽  
Guido Bold ◽  
Pascal Furet ◽  
Jingrui Jiang ◽  
...  

Abstract An attractive target for therapeutic intervention is constitutively activated, mutant FLT3, which is expressed in a subpopulation of patients with acute myelocyic leukemia (AML) and is generally a poor prognostic indicator in patients under the age of 65 years. PKC412 is one of several mutant FLT3 inhibitors that is undergoing clinical testing, and which is currently in late-stage clinical trials. However, the discovery of drug-resistant leukemic blast cells in PKC412-treated patients with AML has prompted the search for novel, structurally diverse FLT3 inhibitors that could be alternatively used to override drug resistance. Here, we report the potent and selective antiproliferative effects of the novel mutant FLT3 inhibitor NVP-AST487 on primary patient cells and cell lines expressing FLT3-ITD or FLT3 kinase domain point mutants. NVP-AST487, which selectively targets mutant FLT3 protein kinase activity, is also shown to override PKC412 resistance in vitro, and has significant antileukemic activity in an in vivo model of FLT3-ITD+ leukemia. Finally, the combination of NVP-AST487 with standard chemotherapeutic agents leads to enhanced inhibition of proliferation of mutant FLT3-expressing cells. Thus, we present a novel class of FLT3 inhibitors that displays high selectivity and potency toward FLT3 as a molecular target, and which could potentially be used to override drug resistance in AML.


Sign in / Sign up

Export Citation Format

Share Document