Involvement of the Nrf2-Keap1 signaling pathway in protection against thallium-induced oxidative stress and mitochondrial dysfunction in primary hippocampal neurons

2020 ◽  
Vol 319 ◽  
pp. 66-73 ◽  
Author(s):  
Guodong Lin ◽  
Yawei Sun ◽  
Jianhai Long ◽  
Xin Sui ◽  
Jun Yang ◽  
...  
2019 ◽  
Vol 3 (Supplement_1) ◽  
Author(s):  
Han-A Park ◽  
Nelli Mnatsakanyan ◽  
Katheryn Broman ◽  
Elizabeth Jonas

Abstract Objectives B-cell lymphoma-extra large (Bcl-xL) is a pro-survival protein localized to mitochondria. Bcl-xL is reported to support brain function by enhancing neuronal energy metabolism, synapse formation, and neurite outgrowth. However, under exposure to excitotoxic stimulation and subsequent oxidative stress, Bcl-xL undergoes caspase dependent cleavage to ∆N-Bcl-xL. Accumulation of ∆N-Bcl-xL is associated with neuronal death; thus, approaches that prevent ∆N-Bcl-xL accumulation protect neurons from excitotoxic insult. In this study, we hypothesize that ∆N-Bcl-xL formation is regulated by redox status in mitochondria. We thus tested if production of ∆N-Bcl-xL can be inhibited by the fat-soluble antioxidant α-tocotrienol (TCT) given its ability to scavenge free radicals produced in the mitochondrial membrane. Methods Primary hippocampal neurons were treated with α-TCT, glutamate, or a combination of both, and mitochondrial oxidative stress, mitochondrial potential, caspase activity, and ∆N-Bcl-xL protein levels were quantified. Results Glutamate caused abnormalities in mitochondrial function leading to neuronal death. The antioxidant α-TCT protected neurons from glutamate-induced mitochondrial dysfunction and cytotoxicity. α-TCT treatment protected against cleavage of full length anti-apoptotic Bcl-xL to form pro-death ∆N-Bcl-xL. α-TCT significantly attenuated glutamate-induced reactive oxygen species (ROS) formation, caspase 3 activation and ∆N-Bcl-xL formation at mitochondria. Conclusions Our data suggests that oxidative stress production during excitotoxicity is responsible for the formation of ∆N-Bcl-xL. Thus, application of a lipophilic antioxidant such as vitamin E is neuroprotective by improving mitochondrial redox status and preventing production of neurotoxic ∆N-Bcl-xL. Funding Sources -NINDS, RO1 -University of Alabama, RGC internal grant.


2019 ◽  
Vol 21 (1) ◽  
pp. 220 ◽  
Author(s):  
Han-A Park ◽  
Nelli Mnatsakanyan ◽  
Katheryn Broman ◽  
Abigail U. Davis ◽  
Jordan May ◽  
...  

B-cell lymphoma-extra large (Bcl-xL) is an anti-apoptotic member of the Bcl2 family of proteins, which supports neurite outgrowth and neurotransmission by improving mitochondrial function. During excitotoxic stimulation, however, Bcl-xL undergoes post-translational cleavage to ∆N-Bcl-xL, and accumulation of ∆N-Bcl-xL causes mitochondrial dysfunction and neuronal death. In this study, we hypothesized that the generation of reactive oxygen species (ROS) during excitotoxicity leads to formation of ∆N-Bcl-xL. We further proposed that the application of an antioxidant with neuroprotective properties such as α-tocotrienol (TCT) will prevent ∆N-Bcl-xL-induced mitochondrial dysfunction via its antioxidant properties. Primary hippocampal neurons were treated with α-TCT, glutamate, or a combination of both. Glutamate challenge significantly increased cytosolic and mitochondrial ROS and ∆N-Bcl-xL levels. ∆N-Bcl-xL accumulation was accompanied by intracellular ATP depletion, loss of mitochondrial membrane potential, and cell death. α-TCT prevented loss of mitochondrial membrane potential in hippocampal neurons overexpressing ∆N-Bcl-xL, suggesting that ∆N-Bcl-xL caused the loss of mitochondrial function under excitotoxic conditions. Our data suggest that production of ROS is an important cause of ∆N-Bcl-xL formation and that preventing ROS production may be an effective strategy to prevent ∆N-Bcl-xL-mediated mitochondrial dysfunction and thus promote neuronal survival.


2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Nora E. Gray ◽  
Jonathan A. Zweig ◽  
Donald G. Matthews ◽  
Maya Caruso ◽  
Joseph F. Quinn ◽  
...  

Centella asiatica has been used for centuries to enhance memory. We have previously shown that a water extract of Centella asiatica (CAW) protects against the deleterious effects of amyloid-β (Aβ) in neuroblastoma cells and attenuates Aβ-induced cognitive deficits in mice. Yet, the neuroprotective mechanism of CAW has yet to be thoroughly explored in neurons from these animals. This study investigates the effects of CAW on neuronal metabolism and oxidative stress in isolated Aβ-expressing neurons. Hippocampal neurons from amyloid precursor protein overexpressing Tg2576 mice and wild-type (WT) littermates were treated with CAW. In both genotypes, CAW increased the expression of antioxidant response genes which attenuated the Aβ-induced elevations in reactive oxygen species (ROS) and lipid peroxidation in Tg2576 neurons. CAW also improved mitochondrial function in both genotypes and increased the expression of electron transport chain enzymes and mitochondrial labeling, suggesting an increase in mitochondrial content. These data show that CAW protects against mitochondrial dysfunction and oxidative stress in Aβ-exposed hippocampal neurons which could contribute to the beneficial effects of the extract observed in vivo. Since CAW also improved mitochondrial function in the absence of Aβ, these results suggest a broader utility for other conditions where neuronal mitochondrial dysfunction occurs.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Rui Li ◽  
Wenzhou Liu ◽  
Li Ou ◽  
Feng Gao ◽  
Min Li ◽  
...  

Emodin is an active monomer extracted from rhubarb root, which has many biological functions, including anti-inflammation, antioxidation, anticancer, and neuroprotection. However, the protective effect of emodin on nerve injury needs to be further elucidated. The purpose of this study is to investigate the effect of emodin on the neuroprotection and the special molecular mechanism. Here, the protective activity of emodin inhibiting H2O2-induced apoptosis and neuroinflammation as well as its molecular mechanisms was examined using human neuroblastoma cells (SH-SY5Y cells). The results showed that emodin significantly enhanced cell viability, reduced cell apoptosis and LDH release. Simultaneously, emodin downregulated H2O2-induced inflammatory factors, including IL-6, NO, and TNF-α, and alleviated H2O2-induced oxidative stress and mitochondrial dysfunction in SH-SY5Y cells. In addition, emodin inhibited the activation of the PI3K/mTOR/GSK3β signaling pathway. What is more, the PI3K/mTOR/GSK3β pathway participated in the protective mechanism of emodin on H2O2-induced cell damage. Collectively, it suggests that emodin alleviates H2O2-induced apoptosis and neuroinflammation potentially by regulating the PI3K/mTOR/GSK3β signaling pathway.


2001 ◽  
Vol 132 (2) ◽  
pp. 121-129 ◽  
Author(s):  
Lynn M. Almli ◽  
Shannon E.G. Hamrick ◽  
Anita A. Koshy ◽  
Martin G. Täuber ◽  
Donna M. Ferriero

Sign in / Sign up

Export Citation Format

Share Document