Atmospheric Pressure Plasma Deposition of Eugenol-Derived Film on Metallic Biomaterial for Suppression of Escherichia Coli and Staphylococcus Aureus Bacterial Biofilm

2021 ◽  
pp. 138833
Author(s):  
Tsegaye Gashaw Getnet ◽  
Milton E. Kayama ◽  
Nilson C. Cruz ◽  
Elidiane C. Rangel ◽  
Iolanda C.S. Duarte ◽  
...  
Materials ◽  
2020 ◽  
Vol 13 (13) ◽  
pp. 2931
Author(s):  
Soumya Banerjee ◽  
Ek Adhikari ◽  
Pitambar Sapkota ◽  
Amal Sebastian ◽  
Sylwia Ptasinska

Atmospheric pressure plasma (APP) deposition techniques are useful today because of their simplicity and their time and cost savings, particularly for growth of oxide films. Among the oxide materials, titanium dioxide (TiO2) has a wide range of applications in electronics, solar cells, and photocatalysis, which has made it an extremely popular research topic for decades. Here, we provide an overview of non-thermal APP deposition techniques for TiO2 thin film, some historical background, and some very recent findings and developments. First, we define non-thermal plasma, and then we describe the advantages of APP deposition. In addition, we explain the importance of TiO2 and then describe briefly the three deposition techniques used to date. We also compare the structural, electronic, and optical properties of TiO2 films deposited by different APP methods. Lastly, we examine the status of current research related to the effects of such deposition parameters as plasma power, feed gas, bias voltage, gas flow rate, and substrate temperature on the deposition rate, crystal phase, and other film properties. The examples given cover the most common APP deposition techniques for TiO2 growth to understand their advantages for specific applications. In addition, we discuss the important challenges that APP deposition is facing in this rapidly growing field.


2016 ◽  
Vol 75 (2) ◽  
pp. 24710 ◽  
Author(s):  
Anton Yu. Nikiforov ◽  
Xiaolong Deng ◽  
Iuliia Onyshchenko ◽  
Danijela Vujosevic ◽  
Vineta Vuksanovic ◽  
...  

Polymers ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 2679
Author(s):  
Věra Mazánková ◽  
Pavel Sťahel ◽  
Petra Matoušková ◽  
Antonín Brablec ◽  
Jan Čech ◽  
...  

Polyoxazoline thin coatings were deposited on glass substrates using atmospheric pressure plasma polymerization from 2-ethyl-2-oxazoline vapours. The plasma polymerization was performed in dielectric barrier discharge burning in nitrogen at atmospheric pressure. The thin films stable in aqueous environments were obtained at the deposition with increased substrate temperature, which was changed from 20 ∘C to 150 ∘C. The thin film deposited samples were highly active against both S. aureus and E. coli strains in general. The chemical composition of polyoxazoline films was studied by FTIR and XPS, the mechanical properties of films were studied by depth sensing indentation technique and by scratch tests. The film surface properties were studied by AFM and by surface energy measurement. After tuning the deposition parameters (i.e., monomer flow rate and substrate temperature), stable films, which resist bacterial biofilm formation and have cell-repellent properties, were achieved. Such antibiofouling polyoxazoline thin films can have many potential biomedical applications.


Sign in / Sign up

Export Citation Format

Share Document