A substructure method for underground structure-dry soil-saturated soil–bedrock interaction under obliquely incident earthquake and its application to groundwater effect on tunnel

2021 ◽  
Vol 111 ◽  
pp. 103864
Author(s):  
Guoliang Zhang ◽  
Mi Zhao ◽  
Jingqi Huang ◽  
Xiuli Du ◽  
Xu Zhao
2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Xin Bao ◽  
Jingbo Liu ◽  
Dongyang Wang ◽  
Shutao Li ◽  
Fei Wang ◽  
...  

A new internal substructure method for seismic wave input in soil-structure systems was recently proposed. This method simplifies the calculation of equivalent input seismic loads and avoids the participation of artificial boundaries in the process of seismic wave input. However, in previous research and applications, the internal substructures are usually intercepted down from the free surface, which forms large substructures and increases the computational effort for data management on the substructure nodes, especially for deep underground structures. In this study, the internal substructure method is modified by intercepting the internal substructures entirely beneath the free surface and adjacently around the underground structures. Then, the equivalent input seismic loads are obtained through the dynamic analysis of the internal substructures and applied to the corresponding positions of the total soil-structure models. Thus, the earthquake energy can be more efficiently input into the region near the underground structures without losing computational accuracy. We provide the detailed implementation procedures of this modified method and validate its applicability and accuracy through the scattered problems of underground cavities in homogeneous and layered half-space sites.


2016 ◽  
Vol 35 (3) ◽  
pp. 229 ◽  
Author(s):  
Ridwan Muis ◽  
Munif Ghulamahdi ◽  
Maya Melati ◽  
Purwono Purwono ◽  
Irdika Mansur

The main problem encountered by soybean crop in acid sulfate tidal lands is less availability of P, because of its chemical bond with Fe. Heavy dose of  fertilization often lead to high fertilizer residue, wich could be used for crops farming using AMF. Research was conducted to study the effect of soybean culturing technique and AMF inoculants source on growth of  soybean. The treatments consisted two factors, arranged in a randomized block design with three replications. The first factor was four inoculants sources of AMF, namely AMF and without inoculation AMF, inoculants from rhizospheres of kudzu (Pueraria javanica), sorghum (Sorghum bicolor), corn (Zea mays) and soybean (Glycine max). The second factor was culturing tehnique, namely water saturated and dry soil culture. Soybeans were grown in pots containing 5 kg soil derived from tidal land,  Simpang Village, District of Berbak, East Tanjung Jabung Regency,  Jambi Province. Results showed that the interaction saturated soil culture with inoculants from corn’s rhizosphere had positive effect on the variability of N, P and K uptake, N and P content in the plant, relative efficiency of inoculants and relative efficiency of P uptake, stem diameter, biomass dry weight, the number of filled pods and seed dry weight of soybeans. Dry soil culture with inoculants of corn’s rhizosphere had greater root colonization, but overall for the growth and grain yield of soybean, saturated soil culture with inoculants from corn rhizosphere has better effect on other growth variables.


2020 ◽  
Vol 195 ◽  
pp. 01005
Author(s):  
Amin Borghei ◽  
Majid Ghayoomi ◽  
Matthew Turner

A set of dynamic centrifuge experiments were performed to assess the effect of the depth of the groundwater table on the seismic site response of silty sand. Silty sand was prepared in a laminar container. The testing program consists of experiments on dry as well as saturated soils and a test, which the groundwater table was below the soil surface. The specimens were spun in a centrifuge, then they were excited with a suite of seismic motions. Results show that 1) while the for peak ground acceleration amplification factor of the saturated soil was smaller than those for the dry soil, the Arias intensity amplification factor of the saturated soil was larger than those for dry soil. 2) as the depth of the groundwater table increased, peak ground amplification factor and short-period amplification factors increased, the mid-period amplification factors decreased. 3) the depth of the groundwater table influences the frequency content of the free field motion. 4) the unsaturated soil behaved stiffer than dry and saturated soils.


1989 ◽  
Vol 37 (4) ◽  
pp. 311-322
Author(s):  
J. van den Ende

Press extracts, saturation extracts and 1:5 by-weight extracts obtained from 75 glasshouse soils were analysed for EC and K, Na, Ca, Mg, NO3, Cl, SO4, HCO3 and P. The analytical data are discussed, with the exception of the HCO3 and P contents of press extracts, as these were much lower than the HCO3 and P contents of equilibrium solutions of the soils. The water-saturated soil pastes from which the saturation extracts were obtained were prepared from both field-moist and air-dry soil. They stood overnight at 25 degrees C before filtration. This overnight storage was unsatisfactory for NO3, as it induced denitrification in the saturated pastes prepared from air-dry soil. Hence, for the determination of NO3, saturation extracts were prepared from air-dry soil, with pastes standing only two hours before filtration. The suspensions from which the 1:5 by-weight extracts were obtained were prepared from air-dry soil and stood overnight at 25 degrees C before filtration. Again overnight storage proved unsatisfactory because of denitrification. Thus, for the determination of NO3, 1:5 suspensions were prepared, this time with a storage period of only two hours. (Abstract retrieved from CAB Abstracts by CABI’s permission)


2019 ◽  
Vol 41 ◽  
pp. 42-52
Author(s):  
V. A. Kochetkov ◽  
◽  
N. Yu. Klyuchko ◽  
I. V. Hanarin ◽  
D. Yu. Sheyanov ◽  
...  

Author(s):  
L. I. Goncharova ◽  
P. N. Tsygvintsev ◽  
О. А. Guseva

The effect of increased UV-A radiation during the ontogeny of barley plants of the Vladimir variety in the vegetation experiment was studied. Changes in the content of malonic dialdehyde, flavonoids and grain yield were revealed. UV-A radiation as compared to UV-B radiation, has lower quantum energy and can have both positive and negative effects on plant regulatory and photosynthetic processes. One of the most damaging effects of increased levels of UV-A radiation is oxidative stress, which causes lipid peroxidation of biological membranes. The existence of a plant cell in such conditions is possible only thanks to a system of antioxidant defense mechanisms. The accumulation of phenolic compounds under the action of UV radiation is a universal mechanism of protection against photodamage, which was formed in the early stages of the evolution of photoautotrophic organisms. Flavonoids are localized in the epidermis of plant tissues and act as an internal filter. The content of flavonoids is determined by the genotype and due to ontogenetic patterns. Plants were grown in a greenhouse, in vessels containing 4.5 kg of air-dry soil. The repetition is threefold (3 vessels in each variant). Sowing density - 13 plants in each vessel. As a source of UV-A radiation used lamps Black Light BLUE company Philips. Plants were irradiated for 5 hours a day from 10 to 15 hours at 13, 25, 34, 43 and 52 stages of organogenesis. The magnitude of the daily biologically effective dose of UV-A radiation was 60.7 kJ / m2. The solar part of the UV spectrum in the vegetation experiment was absent in the greenhouse. The nature of changes in the content of flavonoids under the action of UV-A irradiation during the growing season of plants with the dynamics of the oxidative process has been established. The first maximum was observed during the vegetative growth period, the second - at the earing stage. The data obtained indicate that flavonoids have ontogenetic conditionality and perform photoprotective functions. The increase in their content under the action of UV-A radiation is accompanied by an increase in resistance to photodamage, which is confirmed by the formation of grain yield.


The article presents the results of a vegetation experiment on studying an effect of increasing doses of nitrogen (factor С - N0; No.o5; No.io; N015; No.2o; N0,25 g/kg of absolutely dry soil) and pre-sowing inoculation of seeds with biological preparation "Risotorphine" (factor В - no inoculation; by inoculation) on the formation of vegetative mass and grain yield ofpeas at cultivating in the conditions of a poorly cultivated (factor A0) and of a medium cultivated (factor A f sod-podzolic soil. Cultivation degree of soil was expressed by such criteria as power of an arable horizon, value of metabolic acidity and content of mobile phosphorus, a degree of saturation of soil with bases. For experience tab there were used Mitscher-lich cups with a capacity of 5 kg of absolutely dry soil (a.d.s.), in 16 repetitions of options. The experiments were conducted in the conditions of vegetation site on the territory of University Scientific Centre "Lipogorie" of FSBEI Perm GATA, guided by a science-based methodology. When harvesting peas for a green mass more intensive development and productivity of plants (23.3 and 58.9, 40.0, 78.8 g/cup, respectively) in the phase of stem branching and budding a beginning offlowering that is recorded for its use on the background of inoculation, usage of mineral nitrogen in a dose of 0.10 g/kg on a poorly cultivated soil and 0.15 g/kg a.d.s. on a medium cultivated soil. Applying of higher doses of nitrogen has a depressing effect on development of assimilating surface of pea plants on a poorly and a medium cultivated soil. When raising pea plants before harvest maturity of grain: in the conditions of a poorly cultivated soil for yield at the level of 7.92 g/cup, the process of carrying on only an inoculation of seed with microbial preparation "Rizotorfin" can be considered; in the medium cultivated soil varieties, plant peas impose higher requirements for the level of mineral nutrition the maximum yield in the experiment (which 9.22 g/cup), noted at a combined use of inoculation and mineral nitrogen in a dose of 0.20 g/kg a.d.s.


Sign in / Sign up

Export Citation Format

Share Document