Energy absorption properties of multi-cell thin-walled tubes with a double surface gradient

2019 ◽  
Vol 145 ◽  
pp. 106386 ◽  
Author(s):  
Junxian Zhou ◽  
Ruixian Qin ◽  
Bingzhi Chen
2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Xiaoqin Hao ◽  
Jia Yu ◽  
Weidong He ◽  
Yi Jiang

To solve the problem of the effective cushioning of fast-moving mechanical components in small ring-shaped spaces, the factors affecting the compression and energy absorption properties of small-sized hollow metal tubes were studied. Simulation models were constructed to analyse the influences of tube diameter, wall thickness, relative position, and number of stacked components on the compression and energy absorption properties. The correctness of the simulation method and its output were verified by experiments, which proved the effectiveness of compression and energy absorption properties of small-sized thin-walled metal tubes. The research provides support for the application of metal tube buffers in armament launch technology and engineering practice.


2012 ◽  
Vol 51 ◽  
pp. 112-120 ◽  
Author(s):  
Zhiliang Tang ◽  
Shutian Liu ◽  
Zonghua Zhang

2015 ◽  
Vol 94 ◽  
pp. 410-423 ◽  
Author(s):  
Zhifang Liu ◽  
Wenqian Hao ◽  
Jiamiao Xie ◽  
Jingshuai Lu ◽  
Rui Huang ◽  
...  

2019 ◽  
Vol 36 (8) ◽  
pp. 2588-2611
Author(s):  
Shutian Liu ◽  
Xueshan Ding ◽  
Zeqi Tong

Purpose This paper aims to study the energy absorption properties of the thin-walled square tube with lateral piecewise variable thickness under axial crashing and the influence of the tube parameters on energy absorption. Design/methodology/approach In this work, the energy absorption properties of the thin-walled square tube were analyzed by theoretical, numerical and experimental approach. The numerical results are obtained based on the finite element method. The explicit formulation for predicting the mean crushing force of the tube with lateral piecewise variable thickness was derived based on Super Folding Element method. The limitation of the prediction formulation was analyzed by numerical calculation. The numerical calculation was also used to compare the energy absorption between the tube with lateral piecewise variable thickness and other tubes, and to carry out the parametric analysis. Findings Results indicate that the thin-walled tube with lateral piecewise variable thickness has higher energy absorption properties than the uniform thickness tubes and the tubes with lateral linear variable thickness. The thickness of the corner is the key factor for the energy absorption of the tubes. The thickness of the non-corner region is the secondary factor. Increasing the corner thickness and decreasing the non-corner thickness can make the energy absorption improved. It is also found that the prediction formulation of the mean crushing force given in this paper can quickly and accurately predict the energy absorption of the square tube. Originality/value The outcome of the present research provides a design idea to improve the energy absorption of thin-walled tube by designing cross-section thickness and gives an explicit formulation for predicting the mean crushing force quickly and accurately.


Author(s):  
Haolei Mou ◽  
Zhenyu Feng ◽  
Jiang Xie ◽  
Jun Zou ◽  
Kun Zhou

AbstractTo analysis the failure and energy absorption of carbon fiber reinforced polymer (CFRP) thin-walled square tube, the quasi-static axial compression loading tests are conducted for [±45]3s square tube, and the square tube after test is scanned to further investigate the failure mechanism. Three different finite element models, i.e. single-layer shell model, multi-layer shell model and stacked shell mode, are developed by using the Puck 2000 matrix failure criterion and Yamada Sun fiber failure criterion, and three models are verified and compared according to the experimental energy absorption metrics. The experimental and simulation results show that the failure mode of [±45]3s square tube is the local buckling failure mode, and the energy are absorbed mainly by intralaminar and interlaminar delamination, fiber elastic deformation, fiber debonding and fracture, matrix deformation cracking and longitudinal crack propagation. Three different finite element models can reproduce the collapse behaviours of [±45]3s square tube to some extent, but the stacked shell model can better reproduce the failure mode, and the difference of specific energy absorption (SEA) is minimum, which shows the numerical simulation results are in better agreement with the test results.


2021 ◽  
Vol 11 (12) ◽  
pp. 5445
Author(s):  
Shengyong Gan ◽  
Xingbo Fang ◽  
Xiaohui Wei

The aim of this paper is to obtain the strut friction–touchdown performance relation for designing the parameters involving the strut friction of the landing gear in a light aircraft. The numerical model of the landing gear is validated by drop test of single half-axle landing gear, which is used to obtain the energy absorption properties of strut friction in the landing process. Parametric studies are conducted using the response surface method. Based on the design of the experiment results and response surface functions, the sensitivity analysis of the design variables is implemented. Furthermore, a multi-objective optimization is carried out for good touchdown performance. The results show that the proportion of energy absorption of friction load accounts for more than 35% of the total landing impact energy. The response surface model characterizes well for the landing response, with a minimum fitting accuracy of 99.52%. The most sensitive variables for the four landing responses are the lower bearing width and the wheel moment of inertia. Moreover, the max overloading of sprung mass in LC-1 decreases by 4.84% after design optimization, which illustrates that the method of analysis and optimization on the strut friction of landing gear is efficient for improving the aircraft touchdown performance.


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3817
Author(s):  
Yingjie Huang ◽  
Wenke Zha ◽  
Yingying Xue ◽  
Zimu Shi

This study focuses on the uniaxial compressive behaviour of thin-walled Al alloy tubes filled with pyramidal lattice material. The mechanical properties of an empty tube, Al pyramidal lattice material, and pyramidal lattice material-filled tube were investigated. The results show that the pyramidal lattice material-filled tubes are stronger and provide greater energy absorption on account of the interaction between the pyramidal lattice material and the surrounding tube.


Sign in / Sign up

Export Citation Format

Share Document