scholarly journals Synthesis of nanocomposites of iron oxide/gold (Fe3O4/Au) loaded on activated carbon and their application in water treatment by using sonochemistry: Optimization study

2018 ◽  
Vol 41 ◽  
pp. 279-287 ◽  
Author(s):  
Saideh Bagheri ◽  
Hossein Aghaei ◽  
Mehrorang Ghaedi ◽  
Arash Asfaram ◽  
Majid Monajemi ◽  
...  
2002 ◽  
Vol 2 (1) ◽  
pp. 233-240 ◽  
Author(s):  
J. Cromphout ◽  
W. Rougge

In Harelbeke a Water Treatment Plant with a capacity of 15,000 m3/day, using Schelde river water has been in operation since April 1995. The treatment process comprises nitrification, dephosphatation by direct filtration, storage into a reservoir, direct filtration, granular activated carbon filtration and disinfection. The design of the three-layer direct filters was based on pilot experiments. The performance of the plant during the five years of operation is discussed. It was found that the removal of atrazin by activated carbon depends on the water temperature.


1992 ◽  
Vol 26 (5-6) ◽  
pp. 1255-1264
Author(s):  
K. L. Martins

During treatment of groundwater, radon is often coincidentally removed by processes typically used to remove volatile organic compounds (VOCs)-for example, processes such as liquid-phase granular activated carbon (LGAC) adsorption and air stripping with vapor-phase carbon (VGAC). The removal of radon from drinking water is a positive benefit for the water user; however, the accumulation of radon on activated carbon may cause radiologic hazards for the water treatment plant operators and the spent carbon may be considered a low-level radioactive waste. To date, most literature on radon removal by water treatment processes was based on bench- or residential-scale systems. This paper addresses the impact of radon on municipal and industrial-scale applications. Available data have been used todevelop graphical methods of estimating the radioactivity exposure rates to facility operators and determine the fate of spent carbon. This paper will allow the reader to determine the potential for impact of radon on the system design and operation as follows.Estimate the percent removal of radon from water by LGAC adsorbers and packed tower air strippers. Also, a method to estimate the percent removal of radon by VGAC used for air stripper off-gas will be provided.Estimate if your local radon levels are such that the safety guidelines, suggested by USEPA (United States Environmental Protection Agency), of 25 mR/yr (0.1 mR/day) for radioactivity exposure may or may not be exceeded.Estimate the disposal requirements of the waste carbon for LGAC systems and VGAC for air stripper “Off-Gas” systems. Options for dealing with high radon levels are presented.


2020 ◽  
Vol 18 (1) ◽  
pp. 1148-1166
Author(s):  
Ganjar Fadillah ◽  
Septian Perwira Yudha ◽  
Suresh Sagadevan ◽  
Is Fatimah ◽  
Oki Muraza

AbstractPhysical and chemical methods have been developed for water and wastewater treatments. Adsorption is an attractive method due to its simplicity and low cost, and it has been widely employed in industrial treatment. In advanced schemes, chemical oxidation and photocatalytic oxidation have been recognized as effective methods for wastewater-containing organic compounds. The use of magnetic iron oxide in these methods has received much attention. Magnetic iron oxide nanocomposite adsorbents have been recognized as favorable materials due to their stability, high adsorption capacities, and recoverability, compared to conventional sorbents. Magnetic iron oxide nanocomposites have also been reported to be effective in photocatalytic and chemical oxidation processes. The current review has presented recent developments in techniques using magnetic iron oxide nanocomposites for water treatment applications. The review highlights the synthesis method and compares modifications for adsorbent, photocatalytic oxidation, and chemical oxidation processes. Future prospects for the use of nanocomposites have been presented.


Author(s):  
Hongsik Yoon ◽  
Jiho Lee ◽  
Taijin Min ◽  
Gunhee Lee ◽  
Minsub Oh

Capacitive deionization (CDI) has been highlighted as a promising electrochemical water treatment system. However, the low deionization capacity of CDI electrodes has been a major limitation for its industrial application,...


Author(s):  
O.J.I. Kramer ◽  
C. van Schaik ◽  
P.D.R. Dacomba-Torres ◽  
P.J. de Moel ◽  
E.S. Boek ◽  
...  

2021 ◽  
Vol 773 ◽  
pp. 145110
Author(s):  
Samylla Oliveira ◽  
Allan Clemente ◽  
Indira Menezes ◽  
Amanda Gois ◽  
Ismael Carloto ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document