Low EOT and oxide traps for p-substrate Ge MOS device with hafnium nitride interfacial layer

Vacuum ◽  
2020 ◽  
Vol 179 ◽  
pp. 109479
Author(s):  
Dun-Bao Ruan ◽  
Kuei-Shu Chang-Liao ◽  
Wen-Yen Hsu ◽  
Shih-Han Yi ◽  
Yao-Jen Lee
2014 ◽  
Vol 61 (8) ◽  
pp. 2662-2667 ◽  
Author(s):  
Chung-Hao Fu ◽  
Kuei-Shu Chang-Liao ◽  
Li-Jung Liu ◽  
Chen-Chien Li ◽  
Ting-Ching Chen ◽  
...  

2003 ◽  
Vol 765 ◽  
Author(s):  
S. Van Elshocht ◽  
R. Carter ◽  
M. Caymax ◽  
M. Claes ◽  
T. Conard ◽  
...  

AbstractBecause of aggressive downscaling to increase transistor performance, the physical thickness of the SiO2 gate dielectric is rapidly approaching the limit where it will only consist of a few atomic layers. As a consequence, this will result in very high leakage currents due to direct tunneling. To allow further scaling, materials with a k-value higher than SiO2 (“high-k materials”) are explored, such that the thickness of the dielectric can be increased without degrading performance.Based on our experimental results, we discuss the potential of MOCVD-deposited HfO2 to scale to (sub)-1-nm EOTs (Equivalent Oxide Thickness). A primary concern is the interfacial layer that is formed between the Si and the HfO2, during the MOCVD deposition process, for both H-passivated and SiO2-like starting surfaces. This interfacial layer will, because of its lower k-value, significantly contribute to the EOT and reduce the benefit of the high-k material. In addition, we have experienced serious issues integrating HfO2 with a polySi gate electrode at the top interface depending on the process conditions of polySi deposition and activation anneal used. Furthermore, we have determined, based on a thickness series, the k-value for HfO2 deposited at various temperatures and found that the k-value of the HfO2 depends upon the gate electrode deposited on top (polySi or TiN).Based on our observations, the combination of MOCVD HfO2 with a polySi gate electrode will not be able to scale below the 1-nm EOT marker. The use of a metal gate however, does show promise to scale down to very low EOT values.


2011 ◽  
Vol 39 (1) ◽  
pp. 20-43 ◽  
Author(s):  
A. Ashirgade ◽  
P. B. Harakuni ◽  
W. J. Vanooij

Abstract Adhesion between rubber compound and brass-plated steel tire cord is crucial in governing the overall performance of tires. The rubber-brass interfacial adhesion is influenced by the chemical composition and thickness of the interfacial layer. It has been shown that the interfacial layer consists mainly of sulfides and oxides of copper and zinc. This paper discusses the effect of changes in the chemical composition and the structure of the interfacial layers due to addition of adhesion promoter resins. Grazing incidence x-ray diffraction (GIXRD) experiments were run on sulfidized polished brass coupons previously bonded to five experimental rubber compounds. It was confirmed that heat and humidity conditions lead to physical and chemical changes of the rubber-steel tire cord interfacial layer, closely related to the degree of rubber-brass adhesion. Morphological transformation of the interfacial layer led to loss of adhesion after aging. The adhesion promoter resins inhibit unfavorable morphological changes in the interfacial layer, thus stabilizing it during aging and prolonging failure. Tire cord adhesion tests illustrated that the one-component resins improved adhesion after aging using a rubber compound with lower cobalt loading. Based on the acquired diffraction profiles, these resins were also found to impede crystallization of the sulfide layer after aging, leading to improved adhesion. Secondary ion mass spectrometry depth profiles and scanning electron microscopy micrographs strongly corroborated the findings from GIXRD. This interfacial analysis adds valuable information to our understanding of the complex nature of the rubber-brass bonding mechanism.


2019 ◽  
Author(s):  
Weitao Yang ◽  
Danming Zhong ◽  
Minmin Shi ◽  
Shaoxing Qu ◽  
Hongzheng Chen

1999 ◽  
Vol 567 ◽  
Author(s):  
Renee Nieh ◽  
Wen-Jie Qi ◽  
Yongjoo Jeon ◽  
Byoung Hun Lee ◽  
Aaron Lucas ◽  
...  

ABSTRACTBa0.5Sr0.5TiO3 (BST) is one of the high-k candidates for replacing SiO2 as the gate dielectric in future generation devices. The biggest obstacle to scaling the equivalent oxide thickness (EOT) of BST is an interfacial layer, SixOy, which forms between BST and Si. Nitrogen (N2) implantation into the Si substrate has been proposed to reduce the growth of this interfacial layer. In this study, capacitors (Pt/BST/Si) were fabricated by depositing thin BST films (50Å) onto N2 implanted Si in order to evaluate the effects of implant dose and annealing conditions on EOT. It was found that N2 implantation reduced the EOT of RF magnetron sputtered and Metal Oxide Chemical Vapor Deposition (MOCVD) BST films by ∼20% and ∼33%, respectively. For sputtered BST, an implant dose of 1×1014cm−;2 provided sufficient nitrogen concentration without residual implant damage after annealing. X-ray photoelectron spectroscopy data confirmed that the reduction in EOT is due to a reduction in the interfacial layer growth. X-ray diffraction spectra revealed typical polycrystalline structure with (111) and (200) preferential orientations for both films. Leakage for these 50Å BST films is on the order of 10−8 to 10−5 A/cm2—lower than oxynitrides with comparable EOTs.


Author(s):  
S. Biswas ◽  
A. D. Paul ◽  
P. Das ◽  
P. Tiwary ◽  
H. J. Edwards ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ukrit Thamma ◽  
Tia J. Kowal ◽  
Matthias M. Falk ◽  
Himanshu Jain

AbstractThe nanostructure of engineered bioscaffolds has a profound impact on cell response, yet its understanding remains incomplete as cells interact with a highly complex interfacial layer rather than the material itself. For bioactive glass scaffolds, this layer comprises of silica gel, hydroxyapatite (HA)/carbonated hydroxyapatite (CHA), and absorbed proteins—all in varying micro/nano structure, composition, and concentration. Here, we examined the response of MC3T3-E1 pre-osteoblast cells to 30 mol% CaO–70 mol% SiO2 porous bioactive glass monoliths that differed only in nanopore size (6–44 nm) yet resulted in the formation of HA/CHA layers with significantly different microstructures. We report that cell response, as quantified by cell attachment and morphology, does not correlate with nanopore size, nor HA/CHO layer micro/nano morphology, or absorbed protein amount (bovine serum albumin, BSA), but with BSA’s secondary conformation as indicated by its β-sheet/α-helix ratio. Our results suggest that the β-sheet structure in BSA interacts electrostatically with the HA/CHA interfacial layer and activates the RGD sequence of absorbed adhesion proteins, such as fibronectin and vitronectin, thus significantly enhancing the attachment of cells. These findings provide new insight into the interaction of cells with the scaffolds’ interfacial layer, which is vital for the continued development of engineered tissue scaffolds.


Sign in / Sign up

Export Citation Format

Share Document