Experimental verification of a diffusion tool wear model using a 42CrMo4 steel with an uncoated cemented tungsten carbide at various cutting speeds

Wear ◽  
2005 ◽  
Vol 259 (7-12) ◽  
pp. 1151-1159 ◽  
Author(s):  
M. Nouari ◽  
A. Molinari
1965 ◽  
Vol 87 (3) ◽  
pp. 344-348
Author(s):  
I. Ham ◽  
T. Hoshi ◽  
G. L. Thuering

Performance data were obtained for tungsten carbide, titanium carbide, and oxide tools in the finish turning of C-30 gray iron. Characteristics of typical wear patterns were examined in relation to their effects on cutting force and surface finish. Using both surface finish and tool wear as tool life criteria, the comparative performance of these tools was evaluated. The oxide tool was superior to the carbide tools except at low cutting speeds. The influence of depth of cut and of a prehoned land on the cutting edge was also studied.


2014 ◽  
Vol 611-612 ◽  
pp. 452-459 ◽  
Author(s):  
Giovenco Axel ◽  
Frédéric Valiorgue ◽  
Cédric Courbon ◽  
Joël Rech ◽  
Ugo Masciantonio

The present work is motivated by the will to improve Finite Element (FE) Modelling of cutting tool wear. As a first step, the characterisation of wear mechanisms and identification of a wear model appear to be fundamental. The key idea of this work consists in using a dedicated tribometer, able to simulate relevant tribological conditions encountered in cutting (pressure, velocity). The tribometer can be used to estimate the evolution of wear versus time for various tribological conditions (pressure, velocity, temperature). Based on this design of experiments, it becomes possible to identify analytically a wear model. As a preliminary study this paper will be focused on the impact of sliding speed at the contact interface between 304L stainless steel and tungsten carbide (WC) coated with titanium nitride (TiN) pin. This experiment enables to observe a modification of wear phenomena between sliding speeds of 60 m/min and 180 m/min. Finally, the impact on macroscopic parameters has been observed.


Author(s):  
Niniza S. P. Dlamini ◽  
Iakovos Sigalas ◽  
Andreas Koursaris

Cutting tool wear of polycrystalline cubic boron nitride (PcBN) tools was investigated in oblique turning experiments when machining compacted graphite iron at high cutting speeds, with the intention of elucidating the failure mechanisms of the cutting tools and presenting an analysis of the chip formation process. Dry finish turning experiments were conducted in a CNC lathe at cutting speeds in the range of 500–800m/min, at a feed rate of 0.05mm/rev and depth of cut of 0.2mm. Two different tool end-of-life criteria were used: a maximum flank wear scar size of 0.3mm (flank wear failure criterion) or loss of cutting edge due to rapid crater wear to a point where the cutting tool cannot machine with an acceptable surface finish (surface finish criterion). At high cutting speeds, the cutting tools failed prior to reaching the flank wear failure criterion due to rapid crater wear on the rake face of the cutting tools. Chip analysis, using SEM, revealed shear localized chips, with adiabatic shear bands produced in the primary and secondary shear zones.


2011 ◽  
Vol 223 ◽  
pp. 535-544 ◽  
Author(s):  
Volker Schulze ◽  
Frederik Zanger

Titanium alloys like Ti‑6Al‑4V have a low density, a very high strength and are highly resistant to corrosion. However, the positive qualities in combination with the low heat conductivity have disadvantageous effects on mechanical machining and on cutting in particular. Ti‑6Al‑4V forms segmented chips for the whole range of cutting velocities which influences tool wear. Thus, optimization of the manufacturing process is difficult. To obtain this goal the chip segmentation process and the tool wear are studied numerically in this article. Therefore, a FEM model was developed which calculates the wear rates depending on state variables from the cutting simulation, using an empirical tool wear model. The segmentation leads to mechanical and thermal load variations, which are taken into consideration during the tool wear simulations. In order to evaluate the simulation results, they are compared with experimentally obtained results for different process parameters.


Tribology ◽  
2005 ◽  
Author(s):  
Alexander Bardetsky ◽  
Helmi Attia ◽  
Mohamed Elbestawi

Experimental study has been carried out to establish the effect of cutting conditions (speed, feed, and depth of cut) on the cutting forces and time variation of carbide tool wear data in high-speed machining (face milling) of Al-Si cast alloys that are commonly used in the automotive industry. The experimental setup and force measurement system are described. The test results are used to calibrate and validate the fracture mechanics-based tool wear model developed in Part 1 of this work. The model calibration is conducted for two combinations of cutting speed and a feed rate, which represent a lower and upper limit of the range of cutting conditions. The calibrated model is then validated for a wide range of cutting conditions. This validation is performed by comparing the experimental tool wear data with the tool wear predicted by calibrated cutting tool wear model. The prediction errors were found to be less then 7%, demonstrating the accuracy of the object oriented finite element (OOFE) modeling of the crack propagation process in the cobalt binder. It also demonstrates its capability in capturing the physics of the wear process. This is attributed to the fact that the OOF model incorporates the real microstructure of the tool material.


2018 ◽  
Author(s):  
Kai Guo ◽  
Bin Yang ◽  
Jie Sun ◽  
Vinothkumar Sivalingam

Titanium alloys are widely utilized in aerospace thanks to their excellent combination of high-specific strength, fracture, corrosion resistance characteristics, etc. However, titanium alloys are difficult-to-machine materials. Tool wear is thus of great importance to understand and quantitatively predict tool life. In this study, the wear of coated carbide tool in milling Ti-6Al-4V alloy was assessed by characterization of the worn tool cutting edge. Furthermore, a tool wear model for end milling cutter is established with considering the joint effect of cutting speed and feed rate for characterizing tool wear process and predicting tool wear. Based on the proposed tool wear model equivalent tool life is put forward to evaluate cutting tool life under different cutting conditions. The modelling process of tool wear is given and discussed according to the specific conditions. Experimental work and validation are performed for coated carbide tool milling Ti-6Al-4V alloy.


Sign in / Sign up

Export Citation Format

Share Document