Thr203 of claudin-1, a putative phosphorylation site for MAP kinase, is required to promote the barrier function of tight junctions

2004 ◽  
Vol 295 (1) ◽  
pp. 36-47 ◽  
Author(s):  
Masato Fujibe ◽  
Hideki Chiba ◽  
Takashi Kojima ◽  
Tamotsu Soma ◽  
Takuro Wada ◽  
...  
2008 ◽  
Vol 294 (4) ◽  
pp. G1060-G1069 ◽  
Author(s):  
A. Seth ◽  
Fang Yan ◽  
D. Brent Polk ◽  
R. K. Rao

Probiotics promote intestinal epithelial integrity and reduce infection and diarrhea. We evaluated the effect of Lactobacillus rhamnosus GG-produced soluble proteins (p40 and p75) on the hydrogen peroxide-induced disruption of tight junctions and barrier function in Caco-2 cell monolayers. Pretreatment of cell monolayers with p40 or p75 attenuated the hydrogen peroxide-induced decrease in transepithelial resistance and increase in inulin permeability in a time- and dose-dependent manner. p40 and p75 also prevented hydrogen peroxide-induced redistribution of occludin, ZO-1, E-cadherin, and β-catenin from the intercellular junctions and their dissociation from the detergent-insoluble fractions. Both p40 and p75 induced a rapid increase in the membrane translocation of PKCβI and PKCε. The attenuation of hydrogen peroxide-induced inulin permeability and redistribution of tight junction proteins by p40 and p75 was abrogated by Ro-32-0432, a PKC inhibitor. p40 and p75 also rapidly increased the levels of phospho-ERK1/2 in the detergent-insoluble fractions. U0126 (a MAP kinase inhibitor) attenuated the p40- and p75-mediated reduction of hydrogen peroxide-induced tight junction disruption and inulin permeability. These studies demonstrate that probiotic-secretory proteins protect the intestinal epithelial tight junctions and the barrier function from hydrogen peroxide-induced insult by a PKC- and MAP kinase-dependent mechanism.


Author(s):  
Rita Meyer ◽  
Zoltan Posalaky ◽  
Dennis Mcginley

The Sertoli cell tight junctional complexes have been shown to be the most important structural counterpart of the physiological blood-testis barrier. In freeze etch replicas they consist of extensive rows of intramembranous particles which are not only oriented parallel to one another, but to the myoid layer as well. Thus the occluding complex has both an internal and an overall orientation. However, this overall orientation to the myoid layer does not seem to be necessary to its barrier function. The 20 day old rat has extensive parallel tight junctions which are not oriented with respect to the myoid layer, and yet they are inpenetrable by lanthanum. The mechanism(s) for the control of Sertoli cell junction development and orientation has not been established, although such factors as the presence or absence of germ cells, and/or hormones, especially FSH have been implicated.


Genes ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 232
Author(s):  
M Atikur Rahman ◽  
Subramani P Balasubramani ◽  
Sheikh M Basha

Reduced expression of MADS-box gene AGAMOUS-LIKE11 (VviAGL11) is responsible for stenospermocarpic seedlessness in bunch grapes. This study is aimed to characterize the VviAGL11 orthologous gene (VroAGL11) in native muscadine grapes (Vitis rotundifolia) at the molecular level and analyze its divergence from other plants. The VroAGL11 transcripts were found in all muscadine cultivars tested and highly expressed in berries while barely detectable in leaves. RT-PCR and sequencing of predicted ORFs from diverse grape species showed that AGL11 transcripts were conservatively spliced. The encoded VroAGL11 protein contains highly conserved MADS-MEF2-like domain, MADS domain, K box, putative phosphorylation site and two sumoylation motifs. The muscadine VroAGL11 proteins are almost identical (99%) to that of seeded bunch cultivar, Chardonnay, except in one amino acid (A79G), but differs from mutant protein of seedless bunch grape, Sultanina, in two amino acids, R197L and T210A. Phylogenetic analysis showed that AGL11 gene of muscadine and other Vitis species formed a separate clade than that of other eudicots and monocots. Muscadine grape cultivar “Jane Bell” containing the highest percentage of seed content in berry (7.2% of berry weight) had the highest VroAGL11 expression, but almost none to nominal expression in seedless cultivars Fry Seedless (muscadine) and Reliance Seedless (bunch). These findings suggest that VroAGL11 gene controls the seed morphogenesis in muscadine grapes like in bunch grape and can be manipulated to induce stenospermocarpic seedlessness using gene editing technology.


2020 ◽  
Vol 22 (1) ◽  
pp. 291
Author(s):  
Amna Parveen ◽  
Seungho Choi ◽  
Ju-Hee Kang ◽  
Seung Hyun Oh ◽  
Sun Yeou Kim

Sweet potato (Ipomoea batata) is considered a superfood among vegetables and has been consumed for centuries. Traditionally, sweet potato is used to treat several illnesses, including diarrhea and stomach disorders. This study aimed to explore the protective effect of sweet potato on intestinal barrier function, and to identify the active compounds of sweet potato and their underlying mechanism of action. To this purpose, bioactivity-guided isolation, Western blotting, and immunostaining assays were applied. Interestingly, our bioactivity-guided approach enabled the first isolation and identification of trifostigmanoside I (TS I) from sweet potato. TS I induced mucin production and promoted the phosphorylation of PKCα/β in LS174T human colon cancer cells. In addition, it protected the function of tight junctions in the Caco-2 cell line. These findings suggest that TS I rescued the impaired abilities of MUC2, and protected the tight junctions through PKCα/β, to maintain intestinal barrier function.


2003 ◽  
Vol 16 (4) ◽  
pp. 281-288 ◽  
Author(s):  
Tomomi Nakagawa ◽  
Tomoko Izumi ◽  
Mari Banba ◽  
Yosuke Umehara ◽  
Hiroshi Kouchi ◽  
...  

Phosphoenolpyruvate carboxylases (PEPCs), one form of which in each legume species plays a central role in the carbon metabolism in symbiotic root nodules, are activated through phosphorylation of a conserved residue by a specific protein kinase (PEPC-PK). We characterized the cDNAs for two PEPC isoforms of Lotus japonicus, an amide-translocating legume that forms determinate nodules. One gene encodes a nodule-enhanced form, which is more closely related to the PEPCs in amide-type indeterminate nodules than those in ureide-type determinate nodules. The other gene is expressed in shoots and roots at a low level. Both forms have the putative phosphorylation site, Ser11. We also isolated a cDNA and the corresponding genomic DNA for PEPC-PK of L. japonicus. The recombinant PEPC-PK protein expressed in Escherichia coli phosphorylated recombinant maize C4-form PEPC efficiently in vitro. The level of mRNA for PEPC-PK was high in root nodules, and those in shoots and roots were also significant. In situ hybridization revealed that the expression patterns of the transcripts for PEPC and PEPC-PK were similar in mature root nodules, but were different in emerging nodules. When L. japonicus seedlings were subjected to prolonged darkness and subsequent illumination, the activity of PEPC-PK and the mRNA levels of both PEPC and PEPC-PK in nodules decreased and then recovered, suggesting that they are regulated according to the amounts of photosynthates transported from shoots.


1994 ◽  
Vol 107 (5) ◽  
pp. 1347-1357 ◽  
Author(s):  
H. Wolburg ◽  
J. Neuhaus ◽  
U. Kniesel ◽  
B. Krauss ◽  
E.M. Schmid ◽  
...  

Tight junctions between endothelial cells of brain capillaries are the most important structural elements of the blood-brain barrier. Cultured brain endothelial cells are known to loose tight junction-dependent blood-brain barrier characteristics such as macromolecular impermeability and high electrical resistance. We have directly analyzed the structure and function of tight junctions in primary cultures of bovine brain endothelial cells using quantitative freeze-fracture electron microscopy, and ion and inulin permeability. The complexity of tight junctions, defined as the number of branch points per unit length of tight junctional strands, decreased 5 hours after culture but thereafter remained almost constant. In contrast, the association of tight junction particles with the cytoplasmic leaflet of the endothelial membrane bilayer (P-face) decreased continuously with a major drop between 16 hours and 24 hours. The complexity of tight junctions could be increased by elevation of intracellular cAMP levels while phorbol esters had the opposite effect. On the other hand, the P-face association of tight junction particles was enhanced by elevation of cAMP levels and by coculture of endothelial cells with astrocytes or exposure to astrocyte-conditioned medium. The latter effect on P-face association was induced by astrocytes but not fibroblasts. Elevation of cAMP levels together with astrocyte-conditioned medium synergistically increased transendothelial electrical resistance and decreased inulin permeability of primary cultures, thus confirming the effects on tight junction structure and barrier function. P-face association of tight junction particles in brain endothelial cells may therefore be a critical feature of blood-brain barrier function that can be specifically modulated by astrocytes and cAMP levels. Our results suggest an important functional role for the cytoplasmic anchorage of tight junction particles for brain endothelial barrier function in particular and probably paracellular permeability in general.


2000 ◽  
Vol 278 (4) ◽  
pp. C718-C726 ◽  
Author(s):  
Jason C. Hedges ◽  
Brian C. Oxhorn ◽  
Michael Carty ◽  
Leonard P. Adam ◽  
Ilia A. Yamboliev ◽  
...  

Phosphorylation of h-caldesmon has been proposed to regulate airway smooth muscle contraction. Both extracellular signal-regulated kinase (ERK) and p38 mitogen-activated protein (MAP) kinases phosphorylate h-caldesmon in vitro. To determine whether both enzymes phosphorylate caldesmon in vivo, phosphorylation-site-selective antibodies were used to assay phosphorylation of MAP kinase consensus sites. Stimulation of cultured tracheal smooth muscle cells with ACh or platelet-derived growth factor increased caldesmon phosphorylation at Ser789 by about twofold. Inhibiting ERK MAP kinase activation with 50 μM PD-98059 blocked agonist-induced caldesmon phosphorylation completely. Inhibiting p38 MAP kinases with 25 μM SB-203580 had no effect on ACh-induced caldesmon phosphorylation. Carbachol stimulation increased caldesmon phosphorylation at Ser789 in intact tracheal smooth muscle, which was blocked by the M2 antagonist AF-DX 116 (1 μM). AF-DX 116 inhibited carbachol-induced isometric contraction by 15 ± 1.4%, thus dissociating caldesmon phosphorylation from contraction. Activation of M2 receptors leads to activation of ERK MAP kinases and phosphorylation of caldesmon with little or no functional effect on isometric force. P38 MAP kinases are also activated by muscarinic agonists, but they do not phosphorylate caldesmon in vivo.


Sign in / Sign up

Export Citation Format

Share Document