Induced expression of B7-H3 on the lung cancer cells and macrophages suppresses T-cell mediating anti-tumor immune response

2013 ◽  
Vol 319 (1) ◽  
pp. 96-102 ◽  
Author(s):  
Cheng Chen ◽  
Yu Shen ◽  
Qiu-Xia Qu ◽  
Xu-Qin Chen ◽  
Xue-Guang Zhang ◽  
...  
2003 ◽  
Vol 52 (7) ◽  
pp. 413-422 ◽  
Author(s):  
Yaling Zhou ◽  
Julie A. McEarchern ◽  
Edward Howard ◽  
Gary Pestano ◽  
Michael L. Salgaller ◽  
...  

2020 ◽  
Vol 11 ◽  
Author(s):  
Sarah Musa Hammoudeh ◽  
Thenmozhi Venkatachalam ◽  
Abdul Wahid Ansari ◽  
Riyad Bendardaf ◽  
Qutayba Hamid ◽  
...  

Immunomodulation and chronic inflammation are important mechanisms utilized by cancer cells to evade the immune defense and promote tumor progression. Therefore, various efforts were focused on the development of approaches to reprogram the immune response to increase the immune detection of cancer cells and enhance patient response to various types of therapy. A number of regulatory proteins were investigated and proposed as potential targets for immunomodulatory therapeutic approaches including p53 and Snail. In this study, we investigated the immunomodulatory effect of disrupting Snail-p53 binding induced by the oncogenic KRAS to suppress p53 signaling. We analyzed the transcriptomic profile mediated by Snail-p53 binding inhibitor GN25 in non-small cell lung cancer cells (A549) using Next generation whole RNA-sequencing. Notably, we observed a significant enrichment in transcripts involved in immune response pathways especially those contributing to neutrophil (IL8) and T-cell mediated immunity (BCL6, and CD81). Moreover, transcripts associated with NF-κB signaling were also enriched which may play an important role in the immunomodulatory effect of Snail-p53 binding. Further analysis revealed that the immune expression signature of GN25 overlaps with the signature of other therapeutic compounds known to exhibit immunomodulatory effects validating the immunomodulatory potential of targeting Snail-p53 binding. The effects of GN25 on the immune response pathways suggest that targeting Snail-p53 binding might be a potentially effective therapeutic strategy.


Author(s):  
Mengmeng Yang ◽  
Zongyu Li ◽  
Jianping Tao ◽  
Hao Hu ◽  
Zilin Li ◽  
...  

Abstract Purpose Recent clinical trials with agents targeting immune checkpoint pathway have emerged as an important therapeutic approach for a broad range of cancer types. Resveratrol has been shown to possess cancer preventive and therapeutic effects and has potential to be chemotherapeutic agent/adjuvant. Here, we assessed the effect of resveratrol on immune checkpoint pathways. Methods The expression patterns of Wnt components and PD-L1 were examined by Western blot, Chromatin immunoprecipitation (ChIP) was used for analysis of DNA–protein interaction, the promoter activity was determined by luciferase reporter assay, apoptosis was analyzed by flow cytometry and the ability of the resveratrol to modulate T cell function was assessed in a co-culture system. Results Although the dose-, and cell-type dependent effects of resveratrol on PD-L1 expression have been reported, we show here that resveratrol dose-dependently upregulates PD-L1 expression at the range of pharmacologic-achievable concentrations in lung cancer cells and that is essential for suppression of T-cell-mediated immune response. We also found that Wnt pathway is critical for mediating resveratrol-induced PD-L1 upregulation. Mechanistically, resveratrol activates SirT1 deacetylase to deacetylate and stabilize transcriptional factor Snail. Snail in turn inhibits transcription of Axin2, which leads in disassembly of destruction complex and enhanced binding of β-catenin/TCF to PD-L1 promoter. Conclusion We conclude that resveratrol is capable to suppress anti-tumor immunity by controlling mainly PD-L1 expression. This finding will extend the understanding of resveratrol in regulation of tumor immunity and is relevant to the debate on resveratrol supplements for lung cancer patients.


2018 ◽  
Vol 49 (1) ◽  
pp. 235-244 ◽  
Author(s):  
Changxuan You ◽  
Yu Yang ◽  
Beili Gao

Background/Aims: CD133+ cancer cells display low sensitivity to anti-cancer treatment; thus, combination treatment with adjuvant drugs is required to improve the efficiency of cancer therapy. The aim of this study was to explore the effect of imperatorin, a linear furanocoumarin compound, on γδ T cell-mediated cytotoxicity against CD133+ lung cancer cells. Methods: CD133+ and CD133- subgroups from A549 and PC9 lung cancer cells were sorted by using flow cytometry. The cytotoxicity of γδ T cells against cancer cells was evaluated by measuring lactate dehydrogenase release. The concentration of tumor necrosis factor-related apoptosis-inducing ligand in the co-culture system was determined by using an enzyme-linked immunosorbent assay. Mitochondrial membrane potential, expression of death receptor 4 (DR4) and DR5 on the cell surface, and rate of apoptosis were measured by flow cytometry. Cytochrome c release and cellular protein expression were detected by western blot analysis. Results: Compared with CD133- cells, CD133+ cells were resistant to γδ T cell-mediated cytotoxicity. However, imperatorin significantly increased the sensitivity of CD133+ lung cancer cells to γδ T cell treatment in vitro and in vivo. Mechanically, we found that myeloid cell leukemia 1 (MCL-1), an important anti-apoptotic protein belonging to the Bcl-2 family, was overexpressed in CD133+ A549 and PC9 cells compared to their corresponding CD133- cells. Co-treatment with imperatorin and γδ T cells suppressed the expression of MCL-1, and thus promoted the mitochondrial apoptosis mediated by γδ T cells in CD133+ A549 and PC9 lung cancer cells. Conclusion: Up-regulated MCL-1 in CD133+ lung cancer cells is responsible for their resistance to γδ T cells. Furthermore, the combination of γδ T cells with imperatorin sensitized CD133+ lung cancer cells to γδ T cell-mediated cytotoxicity by targeting MCL-1.


Sign in / Sign up

Export Citation Format

Share Document