Ghrelin is expressed in the pregnant mammary glands of dairy goats and promotes the cell proliferation of mammary epithelial cells

2018 ◽  
Vol 260 ◽  
pp. 115-124 ◽  
Author(s):  
Wenlong Zhang ◽  
Zelin Zhang ◽  
Jinxuan Chen ◽  
Dewen Tong
2004 ◽  
Vol 15 (5) ◽  
pp. 2302-2311 ◽  
Author(s):  
Yijun Yi ◽  
Anne Shepard ◽  
Frances Kittrell ◽  
Biserka Mulac-Jericevic ◽  
Daniel Medina ◽  
...  

This study demonstrated, for the first time, the following events related to p19ARFinvolvement in mammary gland development: 1) Progesterone appears to regulate p19ARFin normal mammary gland during pregnancy. 2) p19ARFexpression levels increased sixfold during pregnancy, and the protein level plateaus during lactation. 3) During involution, p19ARFprotein level remained at high levels at 2 and 8 days of involution and then, declined sharply at day 15. Absence of p19ARFin mammary epithelial cells leads to two major changes, 1) a delay in the early phase of involution concomitant with downregulation of p21Cip1and decrease in apoptosis, and 2) p19ARFnull cells are immortal in vivo measured by serial transplantion, which is partly attributed to complete absence of p21Cip1compared with WT cells. Although, p19ARFis dispensable in mammary alveologenesis, as evidenced by normal differentiation in the mammary gland of pregnant p19ARFnull mice, the upregulation of p19ARFby progesterone in the WT cells and the weakness of p21Cip1in mammary epithelial cells lacking p19ARFstrongly suggest that the functional role(s) of p19ARFin mammary gland development is critical to sustain normal cell proliferation rate during pregnancy and normal apoptosis in involution possibly through the p53-dependent pathway.


Endocrinology ◽  
2010 ◽  
Vol 151 (6) ◽  
pp. 2876-2885 ◽  
Author(s):  
Sarah J. Santos ◽  
Sandra Z. Haslam ◽  
Susan E. Conrad

Signal transducer and activator of transcription (Stat)5a is a critical regulator of mammary gland development. Previous studies have focused on Stat5a’s role in the late pregnant and lactating gland, and although active Stat5a is detectable in mammary epithelial cells in virgin mice, little is known about its role during early mammary gland development. In this report, we compare mammary gland morphology in pubertal and adult nulliparous wild-type and Stat5a−/− mice. The Stat5a-null mammary glands exhibited defects in secondary and side branching, providing evidence that Stat5a regulates these processes. In addition, Stat5a−/− mammary glands displayed an attenuated proliferative response to pregnancy levels of estrogen plus progesterone (E+P), suggesting that it plays an important role in early pregnancy. Finally, we examined one potential mediator of Stat5a’s effects, receptor activator of nuclear factor-κB ligand (RANKL). Stat5a−/− mammary glands were defective in inducing RANKL in response to E+P treatment. In addition, regulation of several reported RANKL targets, including inhibitor of DNA binding 2 (Id2), cyclin D1, and the cyclin-dependent kinase inhibitor p21Waf1/Cip1, was altered in Stat5a−/− mammary cells, suggesting that one or more of these proteins mediate the effects of Stat5a in E+P-treated mammary epithelial cells.


Genes ◽  
2020 ◽  
Vol 11 (7) ◽  
pp. 718
Author(s):  
Meng Zhang ◽  
Li Ma ◽  
Yuhan Liu ◽  
Yonglong He ◽  
Guang Li ◽  
...  

The development of the udder and the milk yield are closely related to the number and vitality of mammary epithelial cells. Many previous studies have proved that non-coding RNAs (ncRNAs) are widely involved in mammary gland development and the physiological activities of lactation. Our laboratory previous sequencing data revealed that miR-574-5p was differentially expressed during the colostrum and peak lactation stages, while the molecular mechanism of the regulatory effect of miR-574-5p on goat mammary epithelial cells (GMECs) is unclear. In this study, the targeting relationship was detected between miR-574-5p or ecotropic viral integration site 5-like (EVI5L) and circRNA-006258. The results declared that miR-574-5p induced the down-regulation of EVI5L expression at both the mRNA and protein levels, while circRNA-006258 relieved the inhibitory effect through adsorbing miR-574-5p. EVI5L blocked the G1 phase and promoted the S phase by activating the Rab23/ITGB1/TIAM1/Rac1-TGF-β/Smad pathway in GMECs. By increasing the protein expression of Bcl2 and reducing the protein expression of Bax, EVI5L promoted cell growth and inhibited apoptosis. The activation of the PI3K/AKT–mTOR signaling pathway promoted the production of triacylglycerol (TAG) and β-casein in GMECs. The circRNA–006258/miR-574-5p/EVI5L axis could regulate the cell growth and milk synthesis of GMECs by sponge-adsorbed miR-574-5p. These results would provide scientific evidence for precision animal breeding in the industry of dairy goats.


Viruses ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 950 ◽  
Author(s):  
Hubert ◽  
Chiche ◽  
Legros ◽  
Jeannin ◽  
Montange ◽  
...  

Zika virus (ZIKV) belongs to the large category of arboviruses. Surprisingly, several human-to-human transmissions of ZIKV have been notified, either following sexual intercourse or from the mother to fetus during pregnancy. Importantly, high viral loads have been detected in the human breast milk of infected mothers, and the existence of breastfeeding as a new mode of mother-to-child transmission of ZIKV was recently hypothesized. However, the maternal origin of infectious particles in breast milk is currently unknown. Here, we show that ZIKV disseminates to the mammary glands of infected mice after both systemic and local exposure with differential kinetics. Ex vivo, we demonstrate that primary human mammary epithelial cells were sensitive and permissive to ZIKV infection in this study. Moreover, by using in vitro models, we prove that mammary luminal- and myoepithelial-phenotype cell lines are both able to produce important virus progeny after ZIKV exposure. Our data suggest that the dissemination of ZIKV to the mammary glands and subsequent infection of the mammary epithelium could be one mechanism of viral excretion in human breast milk.


2017 ◽  
Vol 2017 ◽  
pp. 1-12
Author(s):  
Gaoxiao Xu ◽  
Saixing Duan ◽  
Jianye Hou ◽  
Zhongxin Wei ◽  
Guangwei Zhao

It has been demonstrated that the activator protein related transcription factor Finkel-Biskis-Jinkins murine osteosarcoma B (GosB) is involved in preadipocyte differentiation and triacylglycerol synthesis. However, the role of GosB in regulating the synthesis of milk fatty acid in mouse mammary glands remains unclear. This research uncovered potentially new roles of GosB in suppressing milk fatty acid synthesis. Results revealed that GosB had the highest expression in lung tissue and showed a higher expression level during nonlactation than during lactation. GosB inhibited the expression of fatty acid synthase (FASN), stearoyl-CoA desaturase (SCD), fatty acid binding protein 4 (FABP4), diacylglycerol acyltransferase 1 (DGAT1), perilipin 2 (PLIN2), perilipin 3 (PLIN3), and C/EBPα in mouse mammary gland epithelial cells (MEC). In addition, GosB reduced cellular triglyceride content and the accumulation of lipid droplets; in particular, GosB enhanced saturated fatty acid concentration (C16:0 and C18:0). The PPARγ agonist, rosiglitazone (ROSI), promoted apoptosis and inhibited cell proliferation. GosB increased the expression of Bcl-2 and protected MEC from ROSI-induced apoptosis. Furthermore, MECs were protected from apoptosis through the GosB regulation of intracellular calcium concentrations. These findings suggest that GosB may regulate mammary epithelial cells milk fat synthesis and apoptosis via PPARγ in mouse mammary glands.


2017 ◽  
Vol 62 (No. 7) ◽  
pp. 296-305 ◽  
Author(s):  
Y. Cui ◽  
X. Zhang ◽  
C. Guo ◽  
R. Du ◽  
G. Ailun ◽  
...  

Oligopeptide transportation is mediated by the peptide transporter (PepT), which consists of two isoforms, PepT1 and PepT2. Because PepT play essential roles in amino acid metabolism and cell growth, the aim of the present study was to identify these transporters in bovine mammary glands and to analyze the potential functions of these transporters in mammary epithelial cells. Abundance of PepT1 and PepT2 mRNA was successfully measured in both mammary glands and cultured mammary epithelial cells. In addition, the two proteins were examined using immunohistochemistry, immunocytochemistry, and Western blots. The response of mammary epithelial cells to tripeptide and lactogenic hormone treatment was assayed. The PepT mRNA abundance of cultured epithelial cells and secreted protein in the culture medium were increased after tri-peptide substitution and addition of hormones such as insulin, hydrocortisone, and prolactin. The response of mammary epithelial cells to tripeptide and hormone treatments suggests that PepT affects the mammary gland function and increases bovine milk production.


Sign in / Sign up

Export Citation Format

Share Document