Human-structure interaction: convolution-based estimation of human-induced vibrations using experimental data

2022 ◽  
Vol 167 ◽  
pp. 108511
Author(s):  
F. Lucà ◽  
M. Berardengo ◽  
S. Manzoni ◽  
M. Vanali ◽  
L. Drago
1991 ◽  
Vol 15 ◽  
pp. 247-253
Author(s):  
Devinder S. Sodhi

The data from a small-scale experimental study on ice-structure interaction are used to compute the energy exchanges that take place during creep deformation and intermittent and continuous crushing of ice. The energy supplied by the carriage is partly stored in the structural spring, partly converted to kinetic energy, partly dissipated in deforming and extruding the ice and partly dissipated as heat in the damping mechanisms of the structure. Except for the heat dissipation, all other forms of energy were computed from the experimental data, and the heat dissipation was computed from the energy balance using the first law of thermodynamics. Plots of all forms of energy are shown in graphical form, in which their relative magnitudes, times of occurrence and interplay can be seen. The main result of this study is the thesis that intermittent crushing or ice-induced vibration takes place whenever there is an imbalance between the rates of work done by the carriage and the indentor and that there are no vibrations when these rates of work are equal.


Author(s):  
Michael Scha¨fer ◽  
Saim Yigit ◽  
Marcus Heck

The paper deals with an implicit partitioned solution approach for the numerical simulation of fluid-structure interaction problems. The solution procedure involves the finite-volume flow solver FASTEST, the finite-element structural solver FEAP, and the coupling interface MpCCI. The method is verified and validated by comparisons with benchmark results and experimental data. Investigations concerning the influence of the grid movement technique and an underrelaxation on the performance of the method are presented.


Author(s):  
Liwu Wang ◽  
Mingzhang Tang ◽  
Sijun Zhang

Abstract In order to study the safe distance between twin-parachute during their inflation process for fighter ejection escape, the fighter was equipped with two canopies and two seats, two types of parachute were used to numerically simulate their inflation process, respectively. One of them is C-9, the other a slot-parachute (S-P). Their physical models were built, then the meshes inside and around both parachutes were generated for fluid-structure interaction (FSI) simulation. The penalty function and the arbitrary Lagrangian-Eulerian (ALE) method were employed in the FSI simulation. To validate the numerical model for FSI simulation, at first the single parachute of the twin-parachute was used for the FSI simulation, the predicted inflation times for both types of parachute were compared with the experimental data. The computed results are in good agreement with experimental data. As a result, the inflation times were predicted with twin-parachute for both kinds of parachute. On the basis of the locations of ejected seats after the separation of seat and pilot, the initial locations and orientations of twin-parachute were also obtained. The numerical simulations for both kinds of parachute were performed by the FSI method, respectively. Our results illustrate that when the interval time for two seats ejected is greater than 0.25s, two pilots attached the twin-parachute are safe, and the twin-parachute would not interfere each other. Moreover, our results also indicate that the FSI simulation for twin-parachute inflation process is feasible for engineering applications and have a great potential for wide use.


2010 ◽  
Vol 2010 ◽  
pp. 1-15
Author(s):  
Zheng Guo

A new virtual baffle methodology is implemented to solve contact/detach problem which is often encountered in fluid and structure interaction simulations while using dynamic grids technique. The algorithm is based on tetrahedral unstructured grid, and a zero thickness baffle face is generated between actually contacted two objects. In computation process, this baffle face is divided into two parts representing convective and blocked area, respectively; the area of each part is calculated according to the actual displacement between the two objects. Convective part in a baffle face is treated as inner interface between cells, and on blocked part wall boundary condition is applied; so convective and blocking effect can be achieved on a single baffle face. This methodology can simulate real detaching process starting from contact, that is, zero displacement, while it has no restriction to minimum grid cell size. The methodology is then applied in modeling of a complicated safety valve opening process, involving multidisciplinary fluid and structure interaction and dynamic grids. The results agree well with experimental data, which proves that the virtual baffle method is successful.


1982 ◽  
Vol 26 (02) ◽  
pp. 117-124
Author(s):  
Thomas L. Geers

A boundary-element method for treatment of the fluid-structure interaction in slamming analysis is described. The method emphasizes simplicity and efficiency, so that the analyst may devote most of his computational resources to the analysis of the structure. Numerical results for a number of rigid-impactor problems are compared with analytical solutions and experimental data, and procedures for the finite-element analysis of flexible impactors are discussed.


2017 ◽  
Vol 139 (6) ◽  
Author(s):  
Eduard Amromin

Flow-induced vibration of hydrofoils affects pressure pulsations on their surfaces and influences cavitation inception and desinence. As these pulsations depend on the hydrofoil material, cavitation inception and desinence numbers for hydrofoils of the same shape made from different metals can be substantially different. This conclusion is based on the comparison of the multistep numerical analysis of fluid–structure interaction for hydrofoils Cav2003 with earlier obtained experimental data for them. The material impact on cavitation must be taken into account in future experiments.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Kai Wei ◽  
Wancheng Yuan

This paper investigates the use of three-dimensional (3D) ϕ-u potential-based fluid elements for seismic analyses of deep water pile foundation. The mathematical derivations of the potential-based formulations are presented for reference. The potential-based modeling technique is studied and validated through experimental data and analytical solutions. Earthquake time history analyses for a 9-pile foundation in dry and different water environments are conducted, respectively. The seismic responses are discussed to investigate the complex effect of earthquake-induced fluid-structure interaction. Through the analyses, the potential-based fluid and interface elements are shown to perform adequately for the seismic analyses of pile foundation-water systems, and some interesting conclusions and recommendations are drawn.


Author(s):  
Tiziano Passerini ◽  
Annalisa Quaini ◽  
Umberto Villa ◽  
Alessandro Veneziani ◽  
Suncica Canic

We describe in this paper an open source framework for the solution of problems arising in hemodynamics. The proposed framework is validated through comparison against experimental data for fluid flow in an idealized medical device with rigid boundaries; and verified with a numerical benchmark for flow in compliant vessels. The core of the framework is an open source parallel finite element library that features algorithms to solve both fluid and fluid-structure interaction problems. The computed results are in good quantitative agreement with experimental measurements and theoretical estimates.


Sign in / Sign up

Export Citation Format

Share Document