Editing outside the body: ex vivo gene-modification for β-hemoglobinopathy cellular therapy

Author(s):  
Tolulope O. Rosanwo ◽  
Daniel E. Bauer
2012 ◽  
Vol 82 (3) ◽  
pp. 228-232 ◽  
Author(s):  
Mauro Serafini ◽  
Giuseppa Morabito

Dietary polyphenols have been shown to scavenge free radicals, modulating cellular redox transcription factors in different in vitro and ex vivo models. Dietary intervention studies have shown that consumption of plant foods modulates plasma Non-Enzymatic Antioxidant Capacity (NEAC), a biomarker of the endogenous antioxidant network, in human subjects. However, the identification of the molecules responsible for this effect are yet to be obtained and evidences of an antioxidant in vivo action of polyphenols are conflicting. There is a clear discrepancy between polyphenols (PP) concentration in body fluids and the extent of increase of plasma NEAC. The low degree of absorption and the extensive metabolism of PP within the body have raised questions about their contribution to the endogenous antioxidant network. This work will discuss the role of polyphenols from galenic preparation, food extracts, and selected dietary sources as modulators of plasma NEAC in humans.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tanurup Das ◽  
Abhimanyu Harshey ◽  
Ankit Srivastava ◽  
Kriti Nigam ◽  
Vijay Kumar Yadav ◽  
...  

AbstractThe ex-vivo biochemical changes of different body fluids also referred as aging of fluids are potential marker for the estimation of Time since deposition. Infrared spectroscopy has great potential to reveal the biochemical changes in these fluids as previously reported by several researchers. The present study is focused to analyze the spectral changes in the ATR-FTIR spectra of three body fluids, commonly encountered in violent crimes i.e., semen, saliva, and urine as they dry out. The whole analytical timeline is divided into relatively slow phase I due to the major contribution of water and faster Phase II due to significant evaporation of water. Two spectral regions i.e., 3200–3400 cm−1 and 1600–1000 cm−1 are the major contributors to the spectra of these fluids. Several peaks in the spectral region between 1600 and 1000 cm−1 showed highly significant regression equation with a higher coefficient of determination values in Phase II in contrary to the slow passing Phase I. Principal component and Partial Least Square Regression analysis are the two chemometric tool used to estimate the time since deposition of the aforesaid fluids as they dry out. Additionally, this study potentially estimates the time since deposition of an offense from the aging of the body fluids at the early stages after its occurrence as well as works as the precursor for further studies on an extended timeframe.


2021 ◽  
Vol 22 (10) ◽  
pp. 5148
Author(s):  
Karin Enderle ◽  
Martin Dinkel ◽  
Eva-Maria Spath ◽  
Benjamin Schmid ◽  
Sebastian Zundler ◽  
...  

Intraepithelial lymphocytes (IEL) are widely distributed within the small intestinal epithelial cell (IEC) layer and represent one of the largest T cell pools of the body. While implicated in the pathogenesis of intestinal inflammation, detailed insight especially into the cellular cross-talk between IELs and IECs is largely missing in part due to lacking methodologies to monitor this interaction. To overcome this shortcoming, we employed and validated a murine IEL-IEC (organoids) ex vivo co-culture model system. Using livecell imaging we established a protocol to visualize and quantify the spatio-temporal migratory behavior of IELs within organoids over time. Applying this methodology, we found that IELs lacking CD103 (i.e., integrin alpha E, ITGAE) surface expression usually functioning as a retention receptor for IELs through binding to E-cadherin (CD324) expressing IECs displayed aberrant mobility and migration patterns. Specifically, CD103 deficiency affected the ability of IELs to migrate and reduced their speed during crawling within organoids. In summary, we report a new technology to monitor and quantitatively assess especially migratory characteristics of IELs communicating with IEC ex vivo. This approach is hence readily applicable to study the effects of targeted therapeutic interventions on IEL-IEC cross-talk.


Cells ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1908
Author(s):  
Anna Labedz-Maslowska ◽  
Agnieszka Szkaradek ◽  
Tomasz Mierzwinski ◽  
Zbigniew Madeja ◽  
Ewa Zuba-Surma

Adipose tissue (AT) represents a commonly used source of mesenchymal stem/stromal cells (MSCs) whose proregenerative potential has been widely investigated in multiple clinical trials worldwide. However, the standardization of the manufacturing process of MSC-based cell therapy medicinal products in compliance with the requirements of the local authorities is obligatory and will allow us to obtain the necessary permits for product administration according to its intended use. Within the research phase (RD), we optimized the protocols used for the processing and ex vivo expansion of AT-derived MSCs (AT-MSCs) for the development of an Advanced Therapy Medicinal Product (ATMP) for use in humans. Critical process parameters (including, e.g., the concentration of enzyme used for AT digestion, cell culture conditions) were identified and examined to ensure the high quality of the final product containing AT-MSCs. We confirmed the identity of isolated AT-MSCs as MSCs and their trilineage differentiation potential according to the International Society for Cellular Therapy (ISCT) recommendations. Based on the conducted experiments, in-process quality control (QC) parameters and acceptance criteria were defined for the manufacturing of hospital exemption ATMP (HE-ATMP). Finally, we conducted a validation of the manufacturing process in a GMP facility. In the current study, we presented a process approach leading to the optimization of processing and the ex vivo expansion of AT-MSCs for the development of ATMP for use in humans.


2021 ◽  
Vol 10 (13) ◽  
pp. 2925
Author(s):  
Manuel Sanchez-Diaz ◽  
Maria I. Quiñones-Vico ◽  
Raquel Sanabria de la Torre ◽  
Trinidad Montero-Vílchez ◽  
Alvaro Sierra-Sánchez ◽  
...  

Mesenchymal Stromal Cells (MSCs) are of great interest in cellular therapy. Different routes of administration of MSCs have been described both in pre-clinical and clinical reports. Knowledge about the fate of the administered cells is critical for developing MSC-based therapies. The aim of this review is to describe how MSCs are distributed after injection, using different administration routes in animal models and humans. A literature search was performed in order to consider how MSCs distribute after intravenous, intraarterial, intramuscular, intraarticular and intralesional injection into both animal models and humans. Studies addressing the biodistribution of MSCs in “in vivo” animal models and humans were included. After the search, 109 articles were included in the review. Intravenous administration of MSCs is widely used; it leads to an initial accumulation of cells in the lungs with later redistribution to the liver, spleen and kidneys. Intraarterial infusion bypasses the lungs, so MSCs distribute widely throughout the rest of the body. Intramuscular, intraarticular and intradermal administration lack systemic biodistribution. Injection into various specific organs is also described. Biodistribution of MSCs in animal models and humans appears to be similar and depends on the route of administration. More studies with standardized protocols of MSC administration could be useful in order to make results homogeneous and more comparable.


2020 ◽  
Author(s):  
JL Reading ◽  
VD Roobrouck ◽  
CM Hull ◽  
PD Becker ◽  
J Beyens ◽  
...  

AbstractRecent clinical experience has demonstrated that adoptive regulatory T cell therapy is a safe and feasible strategy to suppress immunopathology via induction of host tolerance to allo- and autoantigens. However, clinical trials continue to be compromised due to an inability to manufacture a sufficient Treg cell dose. Multipotent adult progenitor cells (MAPCⓇ) promote regulatory T cell differentiation in vitro, suggesting they may be repurposed to enhance ex vivo expansion of Tregs for adoptive cellular therapy. Here, we use a GMP compatible Treg expansion platform to demonstrate that MAPC cell-co-cultured Tregs (MulTreg) exhibit a log-fold increase in yield across two independent cohorts, reducing time to target dose by an average of 30%. Enhanced expansion is linked with a distinct Treg cell-intrinsic transcriptional program, characterized by diminished levels of core exhaustion (BATF, ID2, PRDM1, LAYN, DUSP1), and quiescence (TOB1, TSC22D3) related genes, coupled to elevated expression of cell-cycle and proliferation loci (MKI67, CDK1, AURKA, AURKB). In addition, MulTreg display a unique gut homing (CCR7lo β7hi) phenotype and importantly, are more readily expanded from patients with autoimmune disease compared to matched Treg lines, suggesting clinical utility in gut and/or Th1-driven pathology associated with autoimmunity or transplantation. Relative to expanded Tregs, MulTreg retain equivalent and robust purity, FoxP3 TSDR demethylation, nominal effector cytokine production and potent suppression of Th1-driven antigen specific and polyclonal responses in vitro and xeno graft vs host disease (xGvHD) in vivo. These data support the use of MAPC cell co-culture in adoptive Treg therapy platforms as a means to rescue expansion failure and reduce the time required to manufacture a stable, potently suppressive product.


2020 ◽  
Vol 4 (s1) ◽  
pp. 15-15
Author(s):  
A. Colleen Crouch ◽  
Emily A. Thompson ◽  
Mark D. Pagel ◽  
Erik N.K. Cressman

OBJECTIVES/GOALS: The purpose of this work is to investigate natural buffering capacity of liver tissue and tumors, to understand and exploit differences for therapy. Using this work, we will determine the concentrations of reagents (acids or bases) used in ablation treatment to optimize treatment by increasing tumor toxicity and minimizing healthy tissue toxicity. METHODS/STUDY POPULATION: For this preliminary study, two methods will be used: benchtop pH experiments ex vivo and non-invasive imaging using acidoCEST MRI in vivo. For ex vivo, two types of tissues will be tested: non-cancerous liver and tumor tissue from HepG2 inoculated mice (n = 10). After mice are euthanized, pH will be measured in tissue homogenates at baseline and then the homogenates will be placed in either acidic (acetic acid) or basic (sodium hydroxide) solutions with varied concentrations (0.5–10M) and time recorded until pH returns to baseline. For in vivo imaging, Mia PaCA-2 flank model mice (n = 10) will be imaged with acidoCEST MRI to quantify pH at baseline. Mice will then be injected intratumorally with (up to 100 μL of) acid or base at increasing concentrations and imaged to quantify pH changes in the tumor. RESULTS/ANTICIPATED RESULTS: For this study, buffering capacity is defined as the concentration threshold for which tissue can buffer pH back to within normal range. Non-cancerous tissue is likely to buffer a wider range of concentrations compared to tumor tissue. From the benchtop experiment, comparison of time-to-buffer will be made for each concentration of acid/base for the two tissue types. AcidoCEST MRI will provide in vivo buffering capacity and potentially demonstrate tumor heterogeneity of buffering capacity. For both experiments, a pH vs. concentration curve for the two tissue types will allow for comparison of ex vivo to in vivo experiments, which will differentiate contributions of local tissue buffering capacity from the full body’s natural bicarbonate buffer system that depends on respiration and blood flow. DISCUSSION/SIGNIFICANCE OF IMPACT: The pH of the body must be maintained within a narrow range. With cancer, impairment in regulation of tumor metabolism causes acidosis, lowering extracellular pH in tumors. It remains unclear if pH plays a role in local recurrence or tumor toxicity. This work will determine if acidoCEST MRI can measure deliberate alteration of pH and how this change affects biology.


2020 ◽  
Vol 12 (558) ◽  
pp. eabc0441
Author(s):  
Junwei Li ◽  
Thomas Wang ◽  
Ameya R. Kirtane ◽  
Yunhua Shi ◽  
Alexis Jones ◽  
...  

Epithelial tissues line the organs of the body, providing an initial protective barrier as well as a surface for nutrient and drug absorption. Here, we identified enzymatic components present in the gastrointestinal epithelium that can serve as selective means for tissue-directed polymerization. We focused on the small intestine, given its role in drug and nutrient absorption and identified catalase as an essential enzyme with the potential to catalyze polymerization and growth of synthetic biomaterial layers. We demonstrated that the polymerization of dopamine by catalase yields strong tissue adhesion. We characterized the mechanism and specificity of the polymerization in segments of the gastrointestinal tracts of pigs and humans ex vivo. Moreover, we demonstrated proof of concept for application of these gastrointestinal synthetic epithelial linings for drug delivery, enzymatic immobilization for digestive supplementation, and nutritional modulation through transient barrier formation in pigs. This catalase-based approach to in situ biomaterial generation may have broad indications for gastrointestinal applications.


Sign in / Sign up

Export Citation Format

Share Document