scholarly journals Pergolide scavenges both hydroxyl and nitric oxide free radicals in vitro and inhibits lipid peroxidation in different regions of the rat brain

1998 ◽  
Vol 790 (1-2) ◽  
pp. 202-208 ◽  
Author(s):  
Marvin Gómez-Vargas ◽  
Sakiko Nishibayashi-Asanuma ◽  
Masato Asanuma ◽  
Yoichi Kondo ◽  
Emi Iwata ◽  
...  
Author(s):  
Ramya Kuber B

Free radicals are triggered in human body by routine metabolic pathways which are highly reactive substance entangled in various physiological functions but excess production may impart with multitude diseases such as cancer, arthritis, inflammation and various neurodegenerative disorders. As a result, previous findings supported that various photochemical constituents present in natural plants exerts prominent role in defense mechanism against rate of excess free radicals’ production. The present study was carried out to investigate phytochemical composition, quantification studies and in vitro antioxidant potential of Justicia gendarussa (JG) various solvent extracts. JG belongs to the family Acanthaceace and used as traditional healers in various ailments. JG plant material was collected, dried, powdered and subjected for soxhlation to prepare ethanolic, ethyl acetate, aqueous and n-hexane extracts. Screening of Active constituents by various qualitative tests, estimation of total phenolic (TPC) and Total flavonoid content (TFC) and in vitro antioxidant potential of plant extracts were performed by DPPH, Lipid peroxidation, Nitric oxide and Superoxide radical scavenging methods. Present investigation reveals that, presence of flavonoids, phenols, amino acids, glycosides, cardiac glycosides, proteins, carbohydrates, alkaloids, steroids, terpenoids and tannins. TPC and TFC of ethanol extract were found to be 9.47 ± 0.0216 mg Gallic acid equivalent (GAE/g) and 97.6 ± 0.0342 mg Rutin equivalent/g (RUE/g). Among all the analyzed extracts ethanolic extract of JG possessed high radical neutralizing capacity and for DPPH (IC50 32µg/ml), Lipid Peroxidation (28 µg/ml), Nitric oxide (30 µg/ml) and superoxide anion radicals (39 µg/ml) respectively and found to be more effective as ascorbic acid (26 µg/ml) which was used as standard. Overall results of the study concluded that JG leaf extracts possess beneficial Phytoconstituents, high phenol and flavonoid contents and potential antioxidant activity, which could be a viable source of natural antioxidants for treating various degenerative disorders.


2016 ◽  
Vol 11 (7) ◽  
pp. 1934578X1601100 ◽  
Author(s):  
Smail Aazza ◽  
Soukaina El-Guendouz ◽  
Maria Graça Miguel ◽  
M. Dulce Antunes ◽  
M. Leonor Faleiro ◽  
...  

The in vitro antioxidant, anti-inflammatory, anti-hyperglycaemic, and anti-acetylcholinesterase activities of the essential oils (EOs) isolated from six Lamiaceae species ( Thymbra capitata, Thymus albicans, Th. caespititius, Th. carnosus, Th. lotocephalus and Th. mastichina) grown in Portugal, were evaluated. Th. caespititius and T. capitata carvacrol/thymol-rich EOs showed the best capacity for preventing lipid peroxidation, and scavenging the 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) and peroxyl free radicals, as well as for inhibiting lipoxygenase and α-amylase. However, Th. caespititius and Th. lotocephalus 1,8-cineole and linalool rich EOs were the best inhibitors of α-glucosidase. T. capitata, Th. lotocephalus and Th. albicans EOs were the most active for inhibiting acetylcholinesterase. Th. caespititius and Th. mastichina EOs were the main scavengers of nitric oxide (NO) radicals. The comparison between the present data with a survey of the existing literature on the in vitro biological activities of the essential oils isolated from the same species from Portuguese origin, using other methodologies, showed some differences. For instance the use of two oxidizable substrates (egg yolk and lecithin liposomes) led to distinct results mainly for those samples with relatively low activity. In addition, the EOs capacity for scavenging peroxyl radicals was also influenced by the presence of cyclodextrins, as a synergism seemed to occur between EOs and those carbohydrates.


Author(s):  
Olubukola H. Oyeniran ◽  
Adedayo O. Ademiluyi ◽  
Ganiyu Oboh

AbstractObjectivesRauvolfia vomitoria is a medicinal plant used traditionally in Africa in the management of several human diseases including psychosis. However, there is inadequate scientific information on the potency of the phenolic constituents of R. vomitoria leaf in the management of neurodegeneration. Therefore, this study characterized the phenolic constituents and investigated the effects of aqueous and methanolic extracts of R. vomitoria leaf on free radicals, Fe2+-induced lipid peroxidation, and critical enzymes linked to neurodegeneration in rat’s brain in vitro.MethodsThe polyphenols were evaluated by characterizing phenolic constituents using high-performance liquid chromatography coupled with diode array detector (HPLC-DAD). The antioxidant properties were assessed through the extracts ability to reduce Fe3+ to Fe2+; inhibit ABTS, DPPH, and OH radicals and Fe2+-induced lipid peroxidation. The effects of the extracts on AChE and MAO were also evaluated.ResultsThe phenolic characterization of R. vomitoria leaf revealed that there were more flavonoids present. Both aqueous and methanolic extracts of R. vomitoria leaf had inhibitory effects with the methanolic extract having higher significant (p≤0.05) free radicals scavenging ability coupled with inhibition of monoamine oxidases. However, there was no significant (p≤0.05) difference obtained in the inhibition of lipid peroxidation and cholinesterases.ConclusionThis study suggests that the rich phenolic constituents of R. vomitoria leaf might contribute to the observed antioxidative and neuroprotective effects. The methanolic extract was more potent than the aqueous extract; therefore, extraction of R. vomitoria leaf with methanol could offer better health-promoting effects in neurodegenerative condition.


1995 ◽  
Vol 31 ◽  
pp. 295
Author(s):  
Daniela Melchiorri ◽  
Russel J. Reiter ◽  
Ewa Sewerynek ◽  
Li Dun Chen ◽  
Giuseppe Nisticò

2000 ◽  
Vol 83 (4) ◽  
pp. 2022-2029 ◽  
Author(s):  
Ikram M. Elayan ◽  
Milton J. Axley ◽  
Paruchuri V. Prasad ◽  
Stephen T. Ahlers ◽  
Charles R. Auker

Oxygen (O2) at high pressures acts as a neurotoxic agent leading to convulsions. The mechanism of this neurotoxicity is not known; however, oxygen free radicals and nitric oxide (NO) have been suggested as contributors. This study was designed to follow the formation of oxygen free radicals and NO in the rat brain under hyperbaric oxygen (HBO) conditions using in vivo microdialysis. Male Sprague-Dawley rats were exposed to 100% O2 at a pressure of 3 atm absolute for 2 h. The formation of 2,3-dihydroxybenzoic acid (2,3-DHBA) as a result of perfusing sodium salicylate was followed as an indicator for the formation of hydroxyl radicals. 2,3-DHBA levels in hippocampal and striatal dialysates of animals exposed to HBO conditions were not significantly different from controls. However, rats treated under the same conditions showed a six- and fourfold increase in nitrite/nitrate, break down products of NO decomposition, in hippocampal and striatal dialysates, respectively. This increase was completely blocked by the nitric oxide synthase (NOS) inhibitor l-nitroarginine methyl ester (l-NAME). Using neuronal NOS, we determined the NOS O2 K m to be 158 ± 28 (SD) mmHg, a value which suggests that production of NO by NOS would increase approximately four- to fivefold under hyperbaric O2 conditions, closely matching the measured increase in vivo. The increase in NO levels may be partially responsible for some of the detrimental effects of HBO conditions.


Sign in / Sign up

Export Citation Format

Share Document