Near-infrared phosphorescence emission of compounds with low-lying triplet states

1989 ◽  
Vol 159 (1) ◽  
pp. 103-108 ◽  
Author(s):  
A. Völcker ◽  
H.-J. Adick ◽  
R. Schmidt ◽  
H.-D. Brauer
1978 ◽  
Vol 56 (15) ◽  
pp. 1970-1984 ◽  
Author(s):  
D. R. Arnold ◽  
C. P. Hadjiantoniou

The electronic absorption and phosphorescence emission spectra and the photochemical reactivity of several methyl-3-benzoylthiophenes (2- and 4-methyl-3-benzoylthiophene (1, 2), 2,5-dimethyl-3-benzoylthiophene (3), and 3-(2-methylbenzoyl)thiophene (4)) have been studied. Partial state diagrams have been constructed. The lowest energy absorption in hexane solution in every case is the carbonyl n → π* transition. The two lowest triplet states of these ketones are close in energy and, in fact, the nature of the emitting triplet (n,π* or π,π*) depends upon the position of methyl substitution and upon the solvent. The photochemical reactions studied include intramolecular hydrogen abstraction (revealed by deuterium exchange in the adjacent methyl group upon irradiation in perdeuteriomethanol solution), photocycloaddition of dimethyl acetylenedicarboxylate to the thiophene ring, and photocycloaddition of isobutylene to the carbonyl group. Generalizations, potentially useful for predicting photochemical reactivity of these and other aromatic ketones are summarized.


2013 ◽  
Vol 85 (7) ◽  
pp. 1389-1403 ◽  
Author(s):  
Luis G. Arnaut ◽  
Sebastião J. Formosinho

Theories of radiationless conversions and of chemical processes were employed to design better photosensitizers for photodynamic therapy (PDT). In addition to photostability and intense absorption in the near infrared, these photosensitizers were required to generate high yields of long-lived triplet states that could efficiently transfer their energy, or an electron, to molecular oxygen. The guidance provided by the theories was combined with the ability to synthesize large quantities of pure photosensitizers and with the biological screening of graded hydrophilicities/lipophilicities. The theoretical prediction that halogenated sulfonamide tetraphenylbacteriochlorins could satisfy all the criteria for ideal PDT photosensitizers was verified experimentally.


Molecules ◽  
2019 ◽  
Vol 24 (7) ◽  
pp. 1412 ◽  
Author(s):  
Malika Ibrahim-Ouali ◽  
Frédéric Dumur

During the past decades, the development of emissive materials for organic light-emitting diodes (OLEDs) in infrared region has focused the interest of numerous research groups as these devices can find interest in applications ranging from optical communication to defense. To date, metal complexes have been most widely studied to elaborate near-infrared (NIR) emitters due to their low energy emissive triplet states and their facile access. In this review, an overview of the different metal complexes used in OLEDs and enabling to get an infrared emission is provided.


Author(s):  
Timothy Schmidt ◽  
Elham Gholizadeh ◽  
Shyamal Prasad ◽  
Zhi Li Teh ◽  
Thilini Ishwara ◽  
...  

<div>Here we demonstrate an upconversion composition using semiconductor nanocrystal sensitizers that employs molecular triplet states below the singlet oxygen energy. We show that, contrary to the usual expectation, the admission of oxygen enhances the intensity of upconverted light and significantly speeds up the photochemical processes involved. Further, we demonstrate photochemical upconversion from below the silicon band gap in the presence of oxygen.</div>


2010 ◽  
Vol 14 (11) ◽  
pp. 962-967 ◽  
Author(s):  
Roman Dĕdic ◽  
Alexander Molnár ◽  
Antonín Svoboda ◽  
Jan Hála

In this contribution, the influence of lipids on excitation energy transfer from lipophilic photosensitizer tetraphenylporphyrin to oxygen was investigated in chloroform solutions of phosphatidylcholine as well as in bulk lipid. The excited states kinetics were examined in a wide range of lipid concentrations (from zero to the saturated concentration) by direct time- and spectral-resolved detection of weak near infrared phosphorescence of the photosensitizer (around 840 nm) and singlet oxygen (about 1278 nm). While photosensitizer triplet kinetics follows single-exponential decay with lifetime of 0.52 μs in pure chloroform, two distinct components with lifetimes of approximately 0.4 and 1 μs appear after phosphatidylcholine addition. Both the lifetimes exhibit shortening tendency with increasing lipid concentration. Relative weights of the two components depend on the lipid concentration. Singlet oxygen kinetics exhibit single-exponential rise with lifetimes roughly corresponding to the shorter components of photosensitizer decays while their decays require two exponentials. The lifetime of the longer component decreases with increasing concentration of lipid from (77.6 ± 1.3) μ s at pure chloroform to (14.3 ± 1.1) μ s at the saturated lipid concentration. The time-constants obtained in bulk lipid sample follow the above-mentioned trends. Tetraphenylporphyrin photoproduct formation under pulsed excitation in chloroform solutions was demonstrated. The quantum yield of singlet oxygen production of the photoproduct is lower than that of the tetraphenylporphyrin. It was shown that lipids prevent the singlet-oxygen mediated formation of TPP photoproduct, probably by efficient quenching of singlet oxygen. This quenching is justified by shortening of the longer component of singlet oxygen luminescence decays with increasing concentration of the lipid. Moreover, the lipids also quench triplet states of the photosensitizer.


Sign in / Sign up

Export Citation Format

Share Document