Use of an adenoviral vector containing the prodrug activation unit cytosine deaminase for purging bone marrow from breast cancer cells

1997 ◽  
Vol 30 (3) ◽  
pp. 274
Author(s):  
G. Pizzorno ◽  
F. Garcia-Sanchez ◽  
D.S. Krause ◽  
J.J. Leffert ◽  
E. Adams ◽  
...  
Blood ◽  
1998 ◽  
Vol 92 (2) ◽  
pp. 672-682 ◽  
Author(s):  
F. Garcia-Sanchez ◽  
G. Pizzorno ◽  
S.Q. Fu ◽  
T. Nanakorn ◽  
D.S. Krause ◽  
...  

Abstract Ad.CMV-CD is a replication incompetent adenoviral vector carrying a cytomegalovirus (CMV)-driven transcription unit of the cytosine deaminase (CD) gene. The CD transcription unit in this vector catalyzes the deamination of the nontoxic pro-drug, 5-fluorocytosine (5-FC), thus converting it to the cytotoxic drug 5-fluorouracil (5-FU). This adenoviral vector prodrug activation system has been proposed for use in selectively sensitizing breast cancer cells, which may contaminate collections of autologous stem cells products from breast cancer patients, to the toxic effects of 5-FC, without damaging the reconstitutive capability of the normal hematopoietic cells. This system could conceivably kill even the nondividing breast cancer cells, because the levels of 5-FU generated by this system are 10 to 30 times that associated with systemic administration of 5-FU. The incorporation of 5-FU into mRNA at these high levels is sufficient to disrupt mRNA processing and protein synthesis so that even nondividing cells die of protein starvation. To test if the CD adenoviral vector sensitizes breast cancer cells to 5-FC, we exposed primary explants of normal human mammary epithelial cells (HMECs) and the established breast cancer cell (BCC) lines MCF-7 and MDA-MB-453 to the Ad.CMV-CD for 90 minutes. This produced a 100-fold sensitization of these epithelial cells to the effects of 48 hours of exposure to 5-FC. We next tested the selectivity of this system for BCC. When peripheral blood mononuclear cells (PBMCs), collected from cancer patients during the recovery phase from conventional dose chemotherapy-induced myelosuppression, were exposed to the Ad.CMV-CD for 90 minutes in serum-free conditions, little or no detectable conversion of 5-FC into 5-FU was seen even after 48 hours of exposure to high doses of 5-FC. In contrast, 70% of 5-FC was converted into the cytotoxic agent 5-FU when MCF-7 breast cancer cells (BCCs) were exposed to the same Ad.CMV-CD vector followed by 5-FC for 48 hours. All of the BCC lines tested were shown to be sensitive to infection by adenoviral vectors when exposed to a recombinant adenoviral vector containing the reporter gene betagalactosidase (Ad.CMV-βgal). In contrast, less than 1% of the CD34-selected cells and their more immature subsets, such as the CD34+CD38− or CD34+CD33− subpopulations, were positive for infection by the Ad.CMV-βgal vector, as judged by fluorescence-activated cell sorting (FACS) analysis, when exposed to the adenoviral vector under conditions that did not commit the early hematopoietic precursor cells to maturation. When artificial mixtures of hematopoietic cells and BCCs were exposed for 90 minutes to the Ad.CMV-CD vector and to 5-FC for 10 days or more, a greater than 1 million fold reduction in the number of BCCs, as measured by colony-limiting dilution assays, was observed. To test if the conditions were damaging for the hematopoietic reconstituting cells, marrow cells collected from 5-FU–treated male donor mice were incubated with the cytosine deaminase adenoviral vector and then exposed to 5-FC either for 4 days in vitro before transplantation or for 14 days immediately after transplantation in vivo. There was no significant decrease in the reconstituting capability of the male marrow cells, as measured by their persistence in female irradiated recipients for up to 6 months after transplantation. These observations suggest that adenovirus-mediated gene transfer of the Escherichia coli cytosine deaminase gene followed by exposure to the nontoxic pro-drug 5-FC may be a potential strategy to selectively reduce the level of contaminating BCCs in collections of hematopoietic cells used for autografts in breast cancer patients.


2022 ◽  
Vol 12 (2) ◽  
pp. 273-278
Author(s):  
Daqing Jiang ◽  
Xianxin Xie ◽  
Cong Wang ◽  
Weijie Li ◽  
Jianjun He

Our study intends to assess the relationship between exosomes derived from bone marrow mesenchymal stem cells (BMSC-exo) and breast cancer. BMSC-exo were isolated and characterized by transmission electron microscopy. After transfection of BMSCs with miR-204 inhibitor, breast cancer cells were incubated with BMSC-exo followed by analysis of cell proliferation by CCK-8 assay, cell apoptosis by flow cytometry, and expression of apoptosis-related protein and NF-κB signaling by western blot. The co-culture of BMSC-exo with breast cancer cells enhanced miR-204 transcription, inhibited cell proliferation and induced apoptosis. Further, BMSC-exo accelerated apoptosis as demonstrated by the increased level of Bax and casepase-3 and decreased Bcl-2 expression, as well as reduced NF-κB signaling activity. But knockdown of miR-204 abolished the effect of BMSC-exo on apoptosis and proliferation with NF-κB signaling activation. In conclusion, miR-204 from BMSC-exo restrains growth of breast cancer cell and might be a novel target for treating breast cancer.


Blood ◽  
2006 ◽  
Vol 108 (10) ◽  
pp. 3245-3252 ◽  
Author(s):  
Anabella L. Moharita ◽  
Marcelo Taborga ◽  
Kelly E. Corcoran ◽  
Margarette Bryan ◽  
Prem S. Patel ◽  
...  

Abstract Breast cancer cells (BCCs) show preference for the bone marrow (BM). An animal model showed 2 populations of BCCs in the BM with regard to their cycling states. An in vitro model of early BC entry into BM showed normal hematopoiesis. Here, we show a critical role for BCC-derived SDF-1α in hematopoietic regulation. The studies used a coculture of BM stroma and BCCs (cell lines and stage II BCCs). Northern blots and enzyme-linked immunosorbent assay (ELISA) showed gradual decreases in SDF-1α production in BCCs as they contact BM stroma, indicating partial microenvironmental effects caused by stroma on the BCCs. SDF-1 knock-down BCCs and increased exogenous SDF-1α prevented contact inhibition between BCCs and BM stroma. Contact inhibition was restored with low SDF-1α levels. Long-term culture-initiating assays with CD34+/CD38–/Lin– showed normal hematopoiesis provided that SDF-1α levels were reduced in BCCs. Gap junctions (connexin-43 [CX-43]) were formed between BCCs and BM stroma, with concomitant interaction between CD34+/CD38–/Lin– and BM stroma but not with the neighboring BCCs. In summary, SDF-1α levels are reduced in BCCs that contact BM stroma. The low levels of SDF-1α in BCCs regulate interactions between BM stroma and hematopoietic progenitors, consequently facilitating normal hematopoiesis.


Oncogene ◽  
2020 ◽  
Vol 39 (34) ◽  
pp. 5649-5662
Author(s):  
Johanna M. Buschhaus ◽  
Brock A. Humphries ◽  
Samantha S. Eckley ◽  
Tanner H. Robison ◽  
Alyssa C. Cutter ◽  
...  

2018 ◽  
Vol 9 ◽  
pp. 204173141881009 ◽  
Author(s):  
Jake Casson ◽  
Owen G Davies ◽  
Carol-Anne Smith ◽  
Matthew J Dalby ◽  
Catherine C Berry

Disseminated breast cancer cells have the capacity to metastasise to the bone marrow and reside in a dormant state within the mesenchymal stem cell niche. Research has focussed on paracrine signalling factors, such as soluble proteins, within the microenvironment. However, it is now clear extracellular vesicles secreted by resident mesenchymal stem cells into this microenvironment also play a key role in the initiation of dormancy. Dormancy encourages reduced cell proliferation and migration, while upregulating cell adhesion, thus retaining the cancer cells within the bone marrow microenvironment. Here, MCF7 breast cancer cells were treated with mesenchymal stem cell–derived extracellular vesicles, resulting in reduced migration in two-dimensional and three-dimensional culture, with reduced cell proliferation and enhanced adhesion, collectively supporting cancer cell dormancy.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 3904-3904
Author(s):  
Leah A. Marquez-Curtis ◽  
Marcin Wysoczynski ◽  
Mariusz Z. Ratajczak ◽  
Anna Janowska-Wieczorek

Abstract There is increasing evidence that platelets contribute to cancer metastasis, and yet platelet concentrates are frequently transfused to cancer patients to treat thrombocytopenia after chemotherapy. Recently we reported that microvesicles derived from activated platelets (PMV) transfer various surface receptors/adhesion molecules to normal and malignant target cells and modulate their biological responses (Blood2001; 98:3143; Exp Hematol2002; 30:450). In this work, we hypothesized that the interaction of PMV with cancer cells increases their invasive and metastatic potential. PMV were isolated from outdated platelet concentrates and pre-incubated with human breast cancer cell lines (MDA-MB-231, BT-549 and T47D), and the effect of PMV on the invasive/metastatic potential of these cancer cells was evaluated. We determined (i) the transfer of the platelet-derived antigen CD41 to cancer cells and the adhesion of these cells to human umbilical vein endothelial cells (HUVEC), (ii) the expression of matrix metalloproteinases (MMPs) by breast cancer cells and their ability to cross the reconstituted basement membrane Matrigel, (iii) the expression of CXCR4, the cognate receptor of the a-chemokine SDF-1, produced in bone marrow, in these cell lines after incubation with PMV, and (iv) the effects of PMV on the interactions of the tumor cells with stroma. We found that PMV transfer platelet-derived CD41 integrin to the surface of breast cancer cells and promote their adhesion to HUVEC. Preincubation with PMV upregulates the mRNA for MMP-9 and protein secretion in invasive breast cancer cells (MDA-MB-231 and BT-549) and enhances their trans-Matrigel chemoinvasion. PMV also transfer CXCR4 to the surface of the breast cancer cells and stimulate the trans-Matrigel migration of MDA-MB-231 cells towards SDF-1, which was abrogated by AMD3100, a CXCR4 antagonist. Finally we found that PMV increase activation of the latent form of MMP-2 constitutively secreted by fibroblastic cells in co-cultures of tumor cells with bone marrow stroma. Thus, we conclude that PMV may enhance the invasive and metastatic potential of breast cancer cells. Because concentrations of PMV are known to be higher in old platelet concentrates than in fresh ones, we recommend that cancer patients should preferably be transfused with fresh platelet concentrates only.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1269-1269
Author(s):  
Haiming Chen ◽  
Richard A. Campbell ◽  
Mingjie Li ◽  
Melinda S. Gordon ◽  
Dror Shalitin ◽  
...  

Abstract We have previously shown that multiple myeloma (MM) patients express pleiotrophin (PTN) and it is found at high levels in MM serum as well as PTN is a key factor in the transdifferentiation of monocytes into endothelial cells. We determined the level of PTN expression in myeloma and breast cancer and determined whether PTN produced by these tumor cells could induce endothelial cell expression in human monocytes. Both myeloma and breast cancer cells produced high levels of PTN and secreted this growth factor into the culture medium whereas normal bone marrow showed no expression of this protein. Next, MM cell lines, human bone marrow (BM) from MM patients or control subjects or breast cancer cells were cultured with CD14+ PBMCs using transwell culture plates coated with collagen I. CD14+ monocytes exposed to cells from MM cell lines or fresh BM or breast cancer cells showed expression of endothelial genes (Flk-1, Tie-2, CD144, and vWF) and lost expression of monocyte genes (c-fms). Induction of endothelial gene expression was blocked with an anti-PTN antibody. In contrast, CD14+ cells exposed to normal bone marrow as well as cell lines lacking PTN expression did not show endothelial gene expression. We determined whether human monocytes could be incorporated in vivo as vascular endothelium within human tumors that express PTN. Human myeloma LAGλ-1 cells which highly express and secrete PTN were mixed with THP1 monocytes transduced with the green fluorescent protein (GFP) gene and injected subcutaneously into SCID mice. Mice were sacrificed 6 weeks later and tumor was fixed and frozen sections. MM cells or THP1 monocytes alone did not demonstrate the presence of GFP+ blood vessels. Notably, GFP+ THP1 cells were found in blood vessels within the PTN-expressing LAGλ-1 tumor in animals injected with both cells together. When GFP+h2Kd- blood vessels were stained for anti-human and anti-mouse CD31, 60% of the endothelial cells stained positive for human CD31 and the remaining cells stained positive for mouse CD31 whereas none of these cells stained positive for both mouse and human markers. These results show that the blood vessels containing GFP+ cells do not result from fused cells. In addition, an anti-PTN antibody but not control IgG antibody blocks the incorporation of GFP+ cells into the vasculature of the LAGλ-1 tumors. Staining of serial sections with anti-Tie-2 and CD31 antibodies showed a similar distribution pattern. We further examined endothelial gene expression in these in vivo-generated samples using RT-PCR. The results showed that the THP1 monocytes or LAGλ-1 tumor cells alone did not express endothelial genes whereas THP1 monocytes mixed with PTN-expressing LAGλ-1 showed endothelial gene expression. This endothelial gene expression was blocked by anti-PTN antibody. These data show that hematologic and solid tumors through expression of PTN support new blood vessel formation by the transdifferentiation of monocytes into endothelial cells and provide a new potential target for inhibiting blood vessel formation in solid and liquid tumors.


2005 ◽  
Vol 23 (16_suppl) ◽  
pp. 9638-9638
Author(s):  
F. Janku ◽  
G. Korinkova ◽  
J. Srovnal ◽  
Z. Kleibl ◽  
J. Novotny ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document