Naturally occurring IgA antibodies to ocular and oral microorganisms in tears, saliva and colostrum: Evidence for a common mucosal immune system and local immune response

1986 ◽  
Vol 43 (5) ◽  
pp. 739-749 ◽  
Author(s):  
Richard L. Gregory ◽  
Mathea R. Allansmith
2005 ◽  
Vol 3 (2) ◽  
pp. 63-73 ◽  
Author(s):  
C. G. Vinderola ◽  
J. Duarte ◽  
D. Thangavel ◽  
G. Perdigon ◽  
E. Farnworth ◽  
...  

Kefir is a fermented milk (drink) produced by the action of lactic acid bacteria, yeasts and acetic acid bacteria. We recently reported a comparative study on the effect of kefir containing viable or non-viable bacteria by studying their modulatory activity on the intestinal immune response. A functional dose was established in a murine model and the pattern of regulatory and pro-inflammatory cytokines induced was also studied. The existence of a common mucosal immune system implies that the immune cells stimulated in one mucosal tissue can spread and relocate through various mucosal sites. The aim of this work was to determine the effect of an oral administration of kefir on the duration of the intestinal mucosa immune response and the modulatory activity in distal mucosal sites, specifically in the peritoneal and pulmonary macrophages and in the bronchial tissue. BALB/c mice were fed with kefir or pasteurized kefir at doses previously determined as functional for intestinal mucosa immunomodulation. Kefir feeding was stopped and the number of IgA, IgG, IL-4, IL-6, IL-10, IIFNγ and TNFα producing cells was determined in the lamina propria of small intestine immediately, and after 2 and 7 days of kefir withdrawal. IgA producing cells were also measured in the bronchial tissue of lungs immediately and 2 and 7 days after kefir withdrawal. Phagocytic activity of peritoneal and pulmonary macrophages was also determined. The oral administration of kefir or pasteurized kefir increased the number of IgA+ cells not only in the gut lamina propria, but also in the bronchial tissue, supporting the concept of local antibody secretion after remote-site stimulation in the intestinal tract. Both peritoneal and pulmonary macrophages were activated by kefir or pasteurized kefir feeding. Peritoneal macrophages were stimulated faster than pulmonary macrophages (for kefir). The enhanced phagocytic activity achieved by kefir or pasteurized kefir lasted longer for the peritoneal than for the pulmonary macrophages. Due to the increased bronchial IgA and phagocytic activity of pulmonary macrophages after kefir feeding observed in this study, the oral administration of kefir could act as a natural adjuvant for enhancing the specific immune response against respiratory pathogens. The parameters studied returned to control values within a week of cessation of kefir administration. This would suggest that there is a low risk of overstimulating the gut mucosal immune system during periodic consumption of kefir.


2001 ◽  
Vol 8 (3) ◽  
pp. 540-544 ◽  
Author(s):  
Richard L. Gregory

ABSTRACT Streptococcus mutans is present in the saliva of most individuals and is modified by salivary components bound to the cells. These saliva-bound S. mutans are swallowed, exposed to high levels of acidity in the stomach, and presented to the common mucosal immune system. Much effort has been directed to identifying the specific S. mutans antigens that the mucosal immune responses are directed against. However, little is known about the host-altered antigenic determinants that the mucosal immune system recognizes. The immunogenicity of gastrically intubated untreatedS. mutans cells, cells coated with whole human saliva, cells treated with HCl (pH 2.0), and saliva-coated and acid-treated cells in mice was investigated. Saliva and serum samples were assayed by enzyme linked immunosorbent assay for immunoglobulin A (IgA) and IgG antibodies, respectively, against the untreated or treated S. mutans cells. In general, the levels of salivary IgA and serum IgG antibodies to the antigen against which the mice were immunized were significantly higher (P ≤ 0.05). In addition, human saliva and serum samples from 12 subjects were assayed for naturally occurring antibody against the untreated or treated S. mutans cells. In every case, significantly higher reactivity was directed against the saliva-coated and acid-treated cells followed by the saliva-coated S. mutans. These results provide evidence for the altered immunogenicity of swallowed S. mutans in humans by coating native S. mutans antigens with salivary components and/or denaturing surface S. mutans antigens in the acidic environment of the stomach, which would lead to an immune response to modified S. mutans determinants and not to native S. mutans antigens.


Pharmaceutics ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 375 ◽  
Author(s):  
Hellfritzsch ◽  
Scherließ

Vaccine delivery via mucosal surfaces is an interesting alternative to parenteral vaccine administration, as it avoids the use of a needle and syringe. Mucosal vaccine administration also targets the mucosal immune system, which is the largest lymphoid tissue in the human body. The mucosal immune response involves systemic, antigen-specific humoral and cellular immune response in addition to a local response which is characterised by a predominantly cytotoxic T cell response in combination with secreted IgA. This antibody facilitates pathogen recognition and deletion prior to entrance into the body. Hence, administration via the respiratory mucosa can be favoured for all pathogens which use the respiratory tract as entry to the body, such as influenza and for all diseases directly affecting the respiratory tract such as pneumonia. Additionally, the different mucosal tissues of the human body are interconnected via the so-called “common mucosal immune system”, which allows induction of an antigen-specific immune response in distant mucosal sites. Finally, mucosal administration is also interesting in the area of therapeutic vaccination, in which a predominant cellular immune response is required, as this can efficiently be induced by this route of delivery. The review gives an introduction to respiratory vaccination, formulation approaches and application strategies.


1998 ◽  
Vol 66 (12) ◽  
pp. 5630-5635 ◽  
Author(s):  
A. Kantele ◽  
M. Häkkinen ◽  
Z. Moldoveanu ◽  
A. Lu ◽  
E. Savilahti ◽  
...  

ABSTRACT Based on the concept of the common mucosal immune system, immunization at various inductive sites can induce an immune response at other, remote mucosal surfaces. The immune responses elicited through rectal and oral routes of antigen delivery were compared with respect to (i) measurement of antibody responses in serum and various external secretions of the vaccinees and (ii) characterization of the nature and homing potentials of circulating antibody-secreting cells (ASC). Specific ASC appeared in the circulation in 4 of 5 volunteers after oral and 9 of 11 volunteers after rectal immunization withSalmonella typhi Ty21a. The kinetics, magnitude, and immunoglobulin isotype distribution of the ASC responses were similar in the two groups. In both groups, almost all ASC (99 or 95% after oral or rectal immunization, respectively) expressed α4β7, the gut homing receptor (HR), whereas l-selectin, the peripheral lymph node HR, was expressed only on 22 or 38% of ASC, respectively. Oral immunization elicited a more pronounced immune response in saliva and vaginal secretion, while rectal immunization was more potent in inducing a response in nasal secretion, rectum, and tears. No major differences were found in the abilities of the two immunization routes to induce a response in serum or intestinal secretion. Thus, the rectal antigen delivery should be considered as an alternative to the oral immunization route. The different immune response profiles found in various secretions after oral versus rectal antigen administration provide evidence for a compartmentalization within the common mucosal immune system in humans.


2020 ◽  
Vol 11 ◽  
Author(s):  
Michael W. Russell ◽  
Zina Moldoveanu ◽  
Pearay L. Ogra ◽  
Jiri Mestecky

The mucosal immune system is the largest component of the entire immune system, having evolved to provide protection at the main sites of infectious threat: the mucosae. As SARS-CoV-2 initially infects the upper respiratory tract, its first interactions with the immune system must occur predominantly at the respiratory mucosal surfaces, during both inductive and effector phases of the response. However, almost all studies of the immune response in COVID-19 have focused exclusively on serum antibodies and systemic cell-mediated immunity including innate responses. This article proposes that there is a significant role for mucosal immunity and for secretory as well as circulating IgA antibodies in COVID-19, and that it is important to elucidate this in order to comprehend especially the asymptomatic and mild states of the infection, which appear to account for the majority of cases. Moreover, it is possible that mucosal immunity can be exploited for beneficial diagnostic, therapeutic, or prophylactic purposes.


2020 ◽  
Vol 1 (7) ◽  
pp. 343-352
Author(s):  
Tianming Li ◽  
Mei Liu ◽  
Siyu Sun ◽  
Xuying Liu ◽  
Dongyan Liu

The gastrointestinal tract represents the largest mucosal membrane surface and is the one of the most complex human organs. The intestinal barrier dysfunction contributes to systemic immune activation. The mucosal immune system has extremely arduous tasks to resist invaders and promote tolerance of food antigens and the microbiota. The intestinal mucosal immune system fulfills these tasks through complex interactions between immune cells and the local microenvironment in intestine. Intestinal Epithelial Cells (IECs) play important roles in these complex interactions. IECs not only constitute the first barrier of the intestine but also are crucial for integrating external and internal signals and for coordinating the ensuing immune response. Dendritic Cells (DCs) play key roles in shaping the intestinal immune response by their ability to coordinate protective immunity and immune tolerance in the host. DCs are pivotal actors in the connection between innate and adaptive immune responses. The IECs coordinate with the DCs in immune recognition, tolerance and host defense mechanisms. In this review, we will summarize how IECs orchestrate intestinal DCs in intestinal homeostasis and diseases.


1994 ◽  
Vol 10 (1) ◽  
pp. 93-106 ◽  
Author(s):  
Jerry R. McGhee ◽  
Hiroshi Kiyono

AbstractIt is now established that the mucosal immune system is a separate entity and is regulated in a different fashion than that in peripheral lymphoid tissues (the systemic immune system). In this brief review, five selected areas within the field of mucosal immunity are discussed in the context of the goals for vaccines for the Children's Vaccine Initiative.


2021 ◽  
pp. jclinpath-2020-207337
Author(s):  
Claudia Núñez-Torrón ◽  
Ana Ferrer-Gómez ◽  
Esther Moreno Moreno ◽  
Belen Pérez-Mies ◽  
Jesús Villarrubia ◽  
...  

BackgroundSecondary haemophagocytic lymphohistiocytosis (sHLH) is characterised by a hyper activation of immune system that leads to multiorgan failure. It is suggested that excessive immune response in patients with COVID-19 could mimic this syndrome. Some COVID-19 autopsy studies have revealed the presence of haemophagocytosis images in bone marrow, raising the possibility, along with HScore parameters, of sHLH.AimOur objective is to ascertain the existence of sHLH in some patients with severe COVID-19.MethodsWe report the autopsy histological findings of 16 patients with COVID-19, focusing on the presence of haemophagocytosis in bone marrow, obtained from rib squeeze and integrating these findings with HScore parameters. CD68 immunohistochemical stains were used to highlight histiocytes and haemophagocytic cells. Clinical evolution and laboratory parameters of patients were collected from electronic clinical records.ResultsEleven patients (68.7%) displayed moderate histiocytic hyperplasia with haemophagocytosis (HHH) in bone marrow, three patients (18.7%) displayed severe HHH and the remainder were mild. All HScore parameters were collected in 10 patients (62.5%). Among the patients in which all parameters were evaluable, eight patients (80%) had an HScore >169. sHLH was not clinically suspected in any case.ConclusionsOur results support the recommendation of some authors to use the HScore in patients with severe COVID-19 in order to identify those who could benefit from immunosuppressive therapies. The presence of haemophagocytosis in bone marrow tissue, despite not being a specific finding, has proved to be a very useful tool in our study to identify these patients.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Tian-Yu Lei ◽  
Ying-Ze Ye ◽  
Xi-Qun Zhu ◽  
Daniel Smerin ◽  
Li-Juan Gu ◽  
...  

AbstractThrough considerable effort in research and clinical studies, the immune system has been identified as a participant in the onset and progression of brain injury after ischaemic stroke. Due to the involvement of all types of immune cells, the roles of the immune system in stroke pathology and associated effects are complicated. Past research concentrated on the functions of monocytes and neutrophils in the pathogenesis of ischaemic stroke and tried to demonstrate the mechanisms of tissue injury and protection involving these immune cells. Within the past several years, an increasing number of studies have elucidated the vital functions of T cells in the innate and adaptive immune responses in both the acute and chronic phases of ischaemic stroke. Recently, the phenotypes of T cells with proinflammatory or anti-inflammatory function have been demonstrated in detail. T cells with distinctive phenotypes can also influence cerebral inflammation through various pathways, such as regulating the immune response, interacting with brain-resident immune cells and modulating neurogenesis and angiogenesis during different phases following stroke. In view of the limited treatment options available following stroke other than tissue plasminogen activator therapy, understanding the function of immune responses, especially T cell responses, in the post-stroke recovery period can provide a new therapeutic direction. Here, we discuss the different functions and temporal evolution of T cells with different phenotypes during the acute and chronic phases of ischaemic stroke. We suggest that modulating the balance between the proinflammatory and anti-inflammatory functions of T cells with distinct phenotypes may become a potential therapeutic approach that reduces the mortality and improves the functional outcomes and prognosis of patients suffering from ischaemic stroke.


Sign in / Sign up

Export Citation Format

Share Document