Sustainable coccidiosis control in poultry production: the role of live vaccines

2002 ◽  
Vol 32 (5) ◽  
pp. 617-629 ◽  
Author(s):  
H.D Chapman ◽  
T.E Cherry ◽  
H.D Danforth ◽  
G Richards ◽  
M.W Shirley ◽  
...  
2020 ◽  
Author(s):  
Shaohua Wang ◽  
Na Li ◽  
Shugang Jin ◽  
Ruihua Zhang ◽  
Tong Xu

Abstract Background: H9N2 influenza virus, a subtype of influenza A virus, can spread across different species and induce the respiratory infectious disease in humans, leading to a severe public health risk and a huge economic loss to poultry production. Increasing studies have shown that polymerase acidic (PA) subunit of RNA polymerase in ribonucleoproteins complex of H9N2 involves in crossing the host species barriers, the replication and airborne transmission of H9N2.Methods: Here, to further investigate the role of PA subunit during the infection of H9N2 influenza virus, we employed mass spectrometry (MS) to search the potential binding proteins of PA subunit of H9N2. Our MS results showed that programmed cell death protein 7 (PDCD7) is a binding target of PA subunit. Co-immunoprecipitation and pull-down assays further confirmed the interaction between PDCD7 and PA subunit. Overexpression of PA subunit in A549 lung cells greatly increased the levels of PDCD7 in the nuclear and induced cell death assayed by MTT assay.Results: Flow cytometry analysis and Western blot results showed that PA subunit overexpression significantly increased the expression of pro-apoptotic protein, bax and caspase 3, and induced cell apoptosis. However, knockout of PDCD7 effectively attenuated the effects of PA overexpression in cell apoptosis.Conclusions: In conclusion, the PA subunit of H9N2 bind with PDCD7 and regulated cell apoptosis, which provide new insights in the role of PA subunit during H9N2 influenza virus infection.


2020 ◽  
Vol 61 (2) ◽  
pp. 122-131
Author(s):  
P. Racewicz ◽  
M. Majewski ◽  
Z. E. Madeja ◽  
A. Łukomska ◽  
M. Kubiak

2006 ◽  
Vol 72 (1) ◽  
pp. 516-521 ◽  
Author(s):  
M. Sørum ◽  
P. J. Johnsen ◽  
B. Aasnes ◽  
T. Rosvoll ◽  
H. Kruse ◽  
...  

ABSTRACT Environmental reservoirs of glycopeptide-resistant enterococci (GRE) in Norway have been linked to former growth promoting use of the glycopeptide avoparcin in poultry production. We have examined the prevalence of fecal GRE in poultry and poultry farmers 3 to 8 years after the Norwegian avoparcin ban in 1995 and performed molecular analyses of the GRE population. Fecal samples from poultry farmers and their flocks on 29 previously avoparcin-exposed farms were collected on five occasions during the study period (1998 to 2003). All flocks (100%) were GRE positive in 1998. Throughout the study period, 78.5% of the poultry samples were GRE positive. Glycopeptide-resistant Enterococcus faecium (GREF) was isolated from 27.6% of the farmer samples in 1998 and from 27.8% of the samples collected between 1998 and 2003. The prevalence of fecal GRE in poultry declined significantly during the study period, but prevalence in samples from the farmers did not decline. PCR analysis revealed a specific Tn1546-plasmid junction fragment in 93.9% of E. faecium isolates. A putative postsegregation killing (PSK) system linked to Tn1546 was detected in 97.1% of the isolates examined. Multilocus sequence typing of glycopeptide-susceptible (n = 10) and -resistant (n = 10) E. faecium isolates from humans (n = 10) and poultry (n = 10) on two farms displayed 17 different sequence types. The study confirms the continuing persistence of a widespread common plasmid-mediated vanA-pRE25-PSK element within a heterogeneous GRE population on Norwegian poultry farms 8 years after the avoparcin ban. Moreover, it suggests an important role of PSK systems in the maintenance of antimicrobial resistance determinants in reservoirs without apparent antimicrobial selection.


2019 ◽  
Vol 47 (15) ◽  
pp. 8061-8083 ◽  
Author(s):  
Valerie Odon ◽  
Jelke J Fros ◽  
Niluka Goonawardane ◽  
Isabelle Dietrich ◽  
Ahmad Ibrahim ◽  
...  

AbstractZinc finger antiviral protein (ZAP) is a powerful restriction factor for viruses with elevated CpG dinucleotide frequencies. We report that ZAP similarly mediates antiviral restriction against echovirus 7 (E7) mutants with elevated frequencies of UpA dinucleotides. Attenuation of both CpG- and UpA-high viruses and replicon mutants was reversed in ZAP k/o cell lines, and restored by plasmid-derived reconstitution of expression in k/o cells. In pull-down assays, ZAP bound to viral RNA transcripts with either CpG- and UpA-high sequences inserted in the R2 region. We found no evidence that attenuation of CpG- or UpA-high mutants was mediated through either translation inhibition or accelerated RNA degradation. Reversal of the attenuation of CpG-high, and UpA-high E7 viruses and replicons was also achieved through knockout of RNAseL and oligodenylate synthetase 3 (OAS3), but not OAS1. WT levels of replication of CpG- and UpA-high mutants were observed in OAS3 k/o cells despite abundant expression of ZAP, indicative of synergy or complementation of these hitherto unconnected pathways. The dependence on expression of ZAP, OAS3 and RNAseL for CpG/UpA-mediated attenuation and the variable and often low level expression of these pathway proteins in certain cell types, such as those of the central nervous system, has implications for the use of CpG-elevated mutants as attenuated live vaccines against neurotropic viruses.


2021 ◽  
Vol 7 ◽  
Author(s):  
Vishwajit S. Chowdhury ◽  
Guofeng Han ◽  
Hatem M. Eltahan ◽  
Shogo Haraguchi ◽  
Elizabeth R. Gilbert ◽  
...  

Increased average air temperatures and more frequent and prolonged periods of high ambient temperature (HT) associated with global warming will increasingly affect worldwide poultry production. It is thus important to understand how HT impacts poultry physiology and to identify novel approaches to facilitate improved adaptation and thereby maximize poultry growth, health and welfare. Amino acids play a role in many physiological functions, including stress responses, and their relative demand and metabolism are altered tissue-specifically during exposure to HT. For instance, HT decreases plasma citrulline (Cit) in chicks and leucine (Leu) in the embryonic brain and liver. The physiological significance of these changes in amino acids may involve protection of the body from heat stress. Thus, numerous studies have focused on evaluating the effects of dietary administration of amino acids. It was found that oral l-Cit lowered body temperature and increased thermotolerance in layer chicks. When l-Leu was injected into fertile broiler eggs to examine the cause of reduction of Leu in embryos exposed to HT, in ovo feeding of l-Leu improved thermotolerance in broiler chicks. In ovo injection of l-Leu was also found to inhibit weight loss in market-age broilers exposed to chronic HT, giving rise to the possibility of developing a novel biotechnology aimed at minimizing the economic losses to poultry producers during summer heat stress. These findings and the significance of amino acid metabolism in chicks and market-age broilers under HT are summarized and discussed in this review.


Author(s):  
Rene Sansoucy

Experience over three decades of international projects aimed at assisting developing countries has shown that direct transfer of technology from developed countries has widely failed in the sector of Animal Production as in many other sectors. At best this transfer of technology has led to systems requiring high levels of imports in capital, feeds, genetically high producing animals and equipment, which require external technical assistance. These imported inputs which are usually highly subsidized have to a certain extent sometimes allowed a substantial improvement in output levels (eg. in poultry production). In some cases self-sufficiency has been attained, but never self-reliance. This has maintained or increased the dependency of developing countries. Therefore there is a need to base projects on a technology which is more appropriate and may be acceptable and profitable to the beneficiaries.


Sign in / Sign up

Export Citation Format

Share Document