scholarly journals Polylysine induces an antiparallel actin dimer that nucleates filament assembly. Crystal structure at 3.5-Å resolution.

2002 ◽  
Vol 277 (36) ◽  
pp. 33529
Author(s):  
Michael R. Bubb ◽  
Lakshmanan Govindasamy ◽  
Elena G. Yarmola ◽  
Sergey M. Vorobiev ◽  
Steven C. Almo ◽  
...  
2020 ◽  
Author(s):  
Yumi Inoue ◽  
Mamoru Kida ◽  
Miki Kinoshita ◽  
Norihiro Takekawa ◽  
Keiichi Namba ◽  
...  

AbstractThe flagellar protein export apparatus switches export specificity from hook-type to filament-type upon completion of hook assembly, thereby initiating filament assembly at the hook tip. The C-terminal cytoplasmic domain of FlhA (FlhAC) forms a homo-nonameric ring structure that serves as a docking platform for flagellar export chaperones in complex with their cognate filament-type substrates. Interactions of the flexible linker of FlhA (FlhAL) with its nearest FlhAC subunit in the ring allow the chaperones to bind to FlhAC to facilitate filament-type protein export, but it remains unclear how it occurs. Here, we report that FlhAL acts as a switch that brings the order to flagellar assembly. The crystal structure of FlhAC(E351A/D356A) showed that Trp-354 in FlhAL bound to the chaperone-binding site of its neighboring subunit. We propose that FlhAL binds to the chaperon-binding site of FlhAC to suppress the interaction between FlhAC and the chaperones until hook assembly is completed.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Hideyuki Matsunami ◽  
Young-Ho Yoon ◽  
Katsumi Imada ◽  
Keiichi Namba ◽  
Fadel A. Samatey

AbstractAssembly of bacterial flagellar hook requires FlgD, a protein known to form the hook cap. Symmetry mismatch between the hook and the hook cap is believed to drive efficient assembly of the hook in a way similar to the filament cap helping filament assembly. However, the hook cap dependent mechanism of hook assembly has remained poorly understood. Here, we report the crystal structure of the hook cap composed of five subunits of FlgD from Salmonella enterica at 3.3 Å resolution. The pentameric structure of the hook cap is divided into two parts: a stalk region composed of five N-terminal domains; and a petal region containing five C-terminal domains. Biochemical and genetic analyses show that the N-terminal domains of the hook cap is essential for the hook-capping function, and the structure now clearly reveals why. A plausible hook assembly mechanism promoted by the hook cap is proposed based on the structure.


2013 ◽  
Vol 450 (1) ◽  
pp. 95-105 ◽  
Author(s):  
Joci N. A. Macedo ◽  
Napoleão F. Valadares ◽  
Ivo A. Marques ◽  
Frederico M. Ferreira ◽  
Julio C. P. Damalio ◽  
...  

The human genome codes for 13 members of a family of filament-forming GTP-binding proteins known as septins. These have been divided into four different subgroups on the basis of sequence similarity. The differences between the subgroups are believed to control their correct assembly into heterofilaments which have specific roles in membrane remodelling events. Many different combinations of the 13 proteins are theoretically possible and it is therefore important to understand the structural basis of specific filament assembly. However, three-dimensional structures are currently available for only three of the four subgroups. In the present study we describe the crystal structure of a construct of human SEPT3 which belongs to the outstanding subgroup. This construct (SEPT3-GC), which includes the GTP-binding and C-terminal domains, purifies as a nucleotide-free monomer, allowing for its characterization in terms of GTP-binding and hydrolysis. In the crystal structure, SEPT3-GC forms foreshortened filaments which employ the same NC and G interfaces observed in the heterotrimeric complex of human septins 2, 6 and 7, reinforcing the notion of ‘promiscuous’ interactions described previously. In the present study we describe these two interfaces and relate the structure to its tendency to form monomers and its efficiency in the hydrolysis of GTP. The relevance of these results is emphasized by the fact that septins from the SEPT3 subgroup may be important determinants of polymerization by occupying the terminal position in octameric units which themselves form the building blocks of at least some heterofilaments.


Author(s):  
Douglas L. Dorset ◽  
Anthony J. Hancock

Lipids containing long polymethylene chains were among the first compounds subjected to electron diffraction structure analysis. It was only recently realized, however, that various distortions of thin lipid microcrystal plates, e.g. bends, polar group and methyl end plane disorders, etc. (1-3), restrict coherent scattering to the methylene subcell alone, particularly if undistorted molecular layers have well-defined end planes. Thus, ab initio crystal structure determination on a given single uncharacterized natural lipid using electron diffraction data can only hope to identify the subcell packing and the chain axis orientation with respect to the crystal surface. In lipids based on glycerol, for example, conformations of long chains and polar groups about the C-C bonds of this moiety still would remain unknown.One possible means of surmounting this difficulty is to investigate structural analogs of the material of interest in conjunction with the natural compound itself. Suitable analogs to the glycerol lipids are compounds based on the three configurational isomers of cyclopentane-1,2,3-triol shown in Fig. 1, in which three rotameric forms of the natural glycerol derivatives are fixed by the ring structure (4-7).


Author(s):  
George G. Cocks ◽  
Louis Leibovitz ◽  
DoSuk D. Lee

Our understanding of the structure and the formation of inorganic minerals in the bivalve shells has been considerably advanced by the use of electron microscope. However, very little is known about the ultrastructure of valves in the larval stage of the oysters. The present study examines the developmental changes which occur between the time of conception to the early stages of Dissoconch in the Crassostrea virginica(Gmelin), focusing on the initial deposition of inorganic crystals by the oysters.The spawning was induced by elevating the temperature of the seawater where the adult oysters were conditioned. The eggs and sperm were collected separately, then immediately mixed for the fertilizations to occur. Fertilized animals were kept in the incubator where various stages of development were stopped and observed. The detailed analysis of the early stages of growth showed that CaCO3 crystals(aragonite), with orthorhombic crystal structure, are deposited as early as gastrula stage(Figuresla-b). The next stage in development, the prodissoconch, revealed that the crystal orientation is in the form of spherulites.


Author(s):  
F.-R. Chen ◽  
T. L. Lee ◽  
L. J. Chen

YSi2-x thin films were grown by depositing the yttrium metal thin films on (111)Si substrate followed by a rapid thermal annealing (RTA) at 450 to 1100°C. The x value of the YSi2-x films ranges from 0 to 0.3. The (0001) plane of the YSi2-x films have an ideal zero lattice mismatch relative to (111)Si surface lattice. The YSi2 has the hexagonal AlB2 crystal structure. The orientation relationship with Si was determined from the diffraction pattern shown in figure 1(a) to be and . The diffraction pattern in figure 1(a) was taken from a specimen annealed at 500°C for 15 second. As the annealing temperature was increased to 600°C, superlattice diffraction spots appear at position as seen in figure 1(b) which may be due to vacancy ordering in the YSi2-x films. The ordered vacancies in YSi2-x form a mesh in Si plane suggested by a LEED experiment.


Author(s):  
A. F. Marshall ◽  
J. W. Steeds ◽  
D. Bouchet ◽  
S. L. Shinde ◽  
R. G. Walmsley

Convergent beam electron diffraction is a powerful technique for determining the crystal structure of a material in TEM. In this paper we have applied it to the study of the intermetallic phases in the Cu-rich end of the Cu-Zr system. These phases are highly ordered. Their composition and structure has been previously studied by microprobe and x-ray diffraction with sometimes conflicting results.The crystalline phases were obtained by annealing amorphous sputter-deposited Cu-Zr. Specimens were thinned for TEM by ion milling and observed in a Philips EM 400. Due to the large unit cells involved, a small convergence angle of diffraction was used; however, the three-dimensional lattice and symmetry information of convergent beam microdiffraction patterns is still present. The results are as follows:1) 21 at% Zr in Cu: annealed at 500°C for 5 hours. An intermetallic phase, Cu3.6Zr (21.7% Zr), space group P6/m has been proposed near this composition (2). The major phase of our annealed material was hexagonal with a point group determined as 6/m.


Author(s):  
H.-J. Ou ◽  
J. M. Cowley

Using the dedicate VG-HB5 STEM microscope, the crystal structure of high Tc superconductor of YBa2Cu3O7-x has been studied via high resolution STEM (HRSTEM) imaging and nanobeam (∽3A) diffraction patterns. Figure 1(a) and 2(a) illustrate the HRSTEM image taken at 10' times magnification along [001] direction and [100] direction, respectively. In figure 1(a), a grain boundary with strong field contrast is seen between two crystal regions A and B. The grain boundary appears to be parallel to a (110) plane, although it is not possible to determine [100] and [001] axes as it is in other regions which contain twin planes [3]. Following the horizontal lattice lines, from left to right across the grain boundary, a lattice bending of ∽4° is noticed. Three extra lattice planes, indicated by arrows, were found to terminate at the grain boundary and form dislocations. It is believed that due to different chemical composition, such structure defects occur during crystal growth. No bending is observed along the vertical lattice lines.


Author(s):  
L.R. Wallenberg ◽  
J.-O. Bovin ◽  
G. Schmid

Metallic clusters are interesting from various points of view, e.g. as a mean of spreading expensive catalysts on a support, or following heterogeneous and homogeneous catalytic events. It is also possible to study nucleation and growth mechanisms for crystals with the cluster as known starting point.Gold-clusters containing 55 atoms were manufactured by reducing (C6H5)3PAuCl with B2H6 in benzene. The chemical composition was found to be Au9.2[P(C6H5)3]2Cl. Molecular-weight determination by means of an ultracentrifuge gave the formula Au55[P(C6H5)3]Cl6 A model was proposed from Mössbauer spectra by Schmid et al. with cubic close-packing of the 55 gold atoms in a cubeoctahedron as shown in Fig 1. The cluster is almost completely isolated from the surroundings by the twelve triphenylphosphane groups situated in each corner, and the chlorine atoms on the centre of the 3x3 square surfaces. This gives four groups of gold atoms, depending on the different types of surrounding.


Sign in / Sign up

Export Citation Format

Share Document