P IX.17 Homologous recombination in CHO cell lines defective in DNA damage processing

Author(s):  
M. Kruszewski ◽  
H. Kruszewska ◽  
H. Inaba ◽  
P. Jeggo ◽  
I. Szumiel
Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 1189-1189
Author(s):  
Xiaojun Liu ◽  
Yingjun Jiang ◽  
Akira Matsuda ◽  
William Plunkett

Abstract Abstract 1189 We hypothesize that the novel deoxyguanosine analogue CNDAG [9-(2-C-cyano-2-deoxy-1-β-D-arabino-pentofuranosyl) guanine] may share the common action mechanism with its cytosine congener CNDAC [2′-C-cyano-2′-deoxy-1-β-D-arabino-pentofuranosylcytosine], a prodrug of which, sapacitabine, is undergoing clinical trials in myeloid leukemias. CNDAC induces single strand breaks following incorporation into DNA. Subsequent processing or DNA replication across the unrepaired nicks would generate double strand breaks (DSBs) [1]. Because cytosine and guanine nucleoside congeners have remarkably different clinical activities, e.g., cytarabine (acute myelogenous leukemia) and nelarabine (T-cell malignancies), it will be useful to pursue investigations to fully characterize the metabolism and actions of CNDAG. This study was aimed at defining cellular response and damage repair mechanisms for two CNDAG prodrugs, 2-amino-9-(2-C-cyano-2-deoxy-1-β-D-arabino-pentofuranosyl)-6-methoxy purine (6-OMe) and 9-(2-C-cyano-2-deoxy-1-β-D-arabino-pentofuranosyl)-2,6-diaminopurine (6-NH2). Each prodrug is a substrate for adenosine deaminase (ADA), the action of which generates CNDAG. First, growth inhibition by both CNDAG prodrugs was dependent upon both concentration and time of exposure; the proliferation of T-cell malignant lines (CCRF-CEM and Jurkat) was suppressed more to B-cell lines (Raji and IM-9). This may be attributed to relatively low activity of deoxycytidine kinase in the latter cell lines. Second, p53 knocked-out and parental HCT116 cells were equally sensitive to CNDAG 6-NH2 in a clonogenic assay, indicating that cytotoxicity of CNDAG is independent of p53 status. Third, similar to CNDAC, CNDAG prodrugs activated repair proteins in multiple DNA damage response pathways, as revealed by immunoblotting. 24-hr incubation of CCRF-CEM cells with 50 microM either prodrug increased the phosphorylation of Ser-1981 on ATM, Ser-345 on Chk1, Thr-68 on Chk2, Ser-966 on SMC1, Ser-343 on Nbs1 and g-H2AX. In contrast, there was no increase in phosphorylation of two other sensor kinases, DNA-PKcs (Ser-2056) which participates in repair of double strand breaks by non-homologous end-joining, and ATR (Ser-428) which senses stalled DNA replication forks. Fourth, we investigated the role of components of homologous recombination (HR) in CNDAG-induced DNA damage repair. The clonogenic survival of human fibroblasts deficient in ATM or those transfected with an empty vector were approximately 20- to 30-fold more sensitive to CNDAG prodrugs than cells complemented with full-length ATM cDNA. Chinese hamster cells deficient in Rad51D or either of the two Rad51-interacting proteins, Xrcc3 and Brca2, conferred greater than 30-fold sensitivity to CNDAG prodrugs relative to respective wild type lines. Similar sensitization was also observed with CNDAC. In contrast, cells lacking HR function were not more sensitive to ara-C or ara-G compared to their parental and complemented cells, indicating HR is a unique repair mechanism for 2`-C-cyano-2`-deoxy-nucleoside analogues. Finally, a cytogenetic approach was used to analyze sister chromatid exchange (SCE, a hallmark for HR) formation in metaphase cells exposed to 2 microM CNDAG 6-NH2. The frequencies of SCEs in AA8 cells incubated with CNDAG for two cell cycles (mean 14.2 per metaphase) were 2-fold of those exposed for one cell cycle (mean 7.4 per metaphase, n>20, p<0.001), the latter greater than control (mean 6 per metaphase, p<0.05). Together these results demonstrate that DNA damage caused by CNDAG activates ATM-dependent signaling pathways and is repaired through homologous recombination. Thus, this is a class effect caused by 2`-C-cyano-2`-deoxy-nucleoside analogues. Our study suggests that despite relatively less potency, CNDAG might have distinct clinical activity from that of CNDAC. [1] Liu X, et al. Blood, Blood. 2010 May 17, Epub ahead of print, PMID: 20479284. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 3639-3639 ◽  
Author(s):  
Tzung-Huei Lai ◽  
Alma Zecevic ◽  
Brett Ewald ◽  
Liu Chaomei ◽  
Lara Rizzotto ◽  
...  

Abstract Acute myelogenous leukemia (AML) is characterized by multiple genetic and epigenetic abnormalities including a profound dysregulation of microRNA expression. Effective clinical treatment of AML has largely depended on a class of antimetabolites - the nucleoside analogs. Of these, sapacitabine is a nucleoside analog prodrug that is in development for the therapy of AML. It is converted to its active metabolite 2-C-cyano-2-deoxy-1-β(-D-arabino-pentafuranosyl) cytosine (CNDAC), which interferes with DNA synthesis by initially causing a single stranded DNA break that is converted into a double strand break in the subsequent replicative cycle. Such double strand breaks are primarily repaired by the homologous recombination repair (HR) pathway. Consequently, efficient HR may offer a potential resistance mechanism to therapy with sapacitabine. Rad51 is a protein plays a critical role in HR, and high levels of Rad51 are linked to resistance to DNA damaging therapies. Histone deacetylases (HDACs) are chromatin modulating agents that decrease levels of acetylation of histones, repress gene expression. HDAC inhibitors (HDACis) function by modifying chromatin to epigenetically reverse gene silencing of coding and non-coding genes such as the microRNAs (miRs). miRs are endogenous noncoding RNAs 19-25 nucleotides in length that bind to complimentary sequences in target RNA to either destabilize it or prevent its transcription. In this study, we determined that determined primary AML blasts and cell lines express low levels of microRNA-182. Recruitment of HDAC1 and its co-repressors were linked to the epigenetic silencing of miR-182 in AML. Conversely, HDAC inhibition led to accumulation of activating chromatin modifications followed by the upregulation of miR-182 in AML blasts and cell lines. The HDACi-induced increases in miR-182 were linked to decreases in the levels of Rad51, an inhibition in the ability of cells to conduct homologous recombination repair as measured by the Homologous recombination directed repair (HDR) assay, persistent levels of DNA damage as measured by the levels of Ɣ-H2AX and sensitization to sapacitabine. We then mechanistically defined the relation between miR-182 and Rad51. Ectopic expression of miR-182 in AML cell lines identified that Rad51 was a target of miR-182. An assay with luciferase constructs bearing full length or mutated Rad51 3'UTR indentified that Rad51 was a direct target of miR-182. We also determined that ectopic expression of miR-182 attenuated the ability of AML cells to conduct homologus repair as measured by the Homologous recombination directed repair (HDR) assay which resulted in sensitizing AML cells to the cytotoxic action of CNDAC as measured by colony forming assays. In conclusion, our data show that HDAC inhibitors target Rad51 via miR-182 to compromise HR repair to result in higher levels of residual DNA damage and sensitize AML cells to double strand damaging agents such as CNDAC. Disclosures No relevant conflicts of interest to declare.


1996 ◽  
Vol 364 (2) ◽  
pp. 73-79 ◽  
Author(s):  
Giuseppe Rainaldi ◽  
Barbara Capecchi ◽  
Antonio Piras ◽  
Lucia Vatteroni

Author(s):  
Pietro Paolo Vitiello ◽  
Giulia Martini ◽  
Luigi Mele ◽  
Emilio Francesco Giunta ◽  
Vincenzo De Falco ◽  
...  

Abstract Background Despite the advancements in new therapies for colorectal cancer (CRC), chemotherapy still constitutes the mainstay of the medical treatment. For this reason, new strategies to increase the efficacy of chemotherapy are desirable. Poly-ADP-Ribose Polymerase inhibitors (PARPi) have shown to increase the activity of DNA damaging chemotherapeutics used in the treatment of CRC, however previous clinical trials failed to validate these results and pointed out dose-limiting toxicities that hamper the use of such combinations in unselected CRC patients. Nevertheless, in these studies little attention was paid to the mutational status of homologous recombination repair (HRR) genes. Methods We tested the combination of the PARPi niraparib with either 5-fluorouracil, oxaliplatin or irinotecan (SN38) in a panel of 12 molecularly annotated CRC cell lines, encompassing the 4 consensus molecular subtypes (CMSs). Synergism was calculated using the Chou-Talalay method for drug interaction. A correlation between synergism and genetic alterations in genes involved in homologous recombination (HR) repair was performed. We used clonogenic assays, mice xenograft models and patient-derived 3D spheroids to validate the results. The induction of DNA damage was studied by immunofluorescence. Results We showed that human CRC cell lines, as well as patient-derived 3D spheroids, harboring pathogenic ATM mutations are significantly vulnerable to PARPi/chemotherapy combination at low doses, regardless of consensus molecular subtypes (CMS) and microsatellite status. The strongest synergism was shown for the combination of niraparib with irinotecan, and the presence of ATM mutations was associated to a delay in the resolution of double strand breaks (DSBs) through HRR and DNA damage persistence. Conclusions This work demonstrates that a numerically relevant subset of CRCs carrying heterozygous ATM mutations may benefit from the combination treatment with low doses of niraparib and irinotecan, suggesting a new potential approach in the treatment of ATM-mutated CRC, that deserves to be prospectively validated in clinical trials.


2010 ◽  
Vol 49 (S 01) ◽  
pp. S64-S68
Author(s):  
E. Dikomey

SummaryIonising irradiation acts primarily via induction of DNA damage, among which doublestrand breaks are the most important lesions. These lesions may lead to lethal chromosome aberrations, which are the main reason for cell inactivation. Double-strand breaks can be repaired by several different mechanisms. The regulation of these mechanisms appears be fairly different for normal and tumour cells. Among different cell lines capacity of doublestrand break repair varies by only few percents and is known to be determined mostly by genetic factors. Knowledge about doublestrand break repair mechanisms and their regulation is important for the optimal application of ionising irradiation in medicine.


2021 ◽  
Vol 11 (9) ◽  
pp. 3729
Author(s):  
Katarzyna Balon ◽  
Benita Wiatrak

Models based on cell cultures have become a useful tool in modern scientific research. Since primary cell lines are difficult to obtain and handle, neoplasm-derived lines like PC12 and THP-1 offer a cheap and flexible solution for neurobiological studies but require prior differentiation to serve as a neuronal or microglia model. PC12 cells constitute a suitable research model only after differentiation by incubation with nerve growth factor (NGF) and THP-1 cells after administering a differentiation factor such as phorbol 12-myristate-13-acetate (PMA). Still, quite often, studies are performed on these cancer cells without differentiation. The study aimed to assess the impact of PC12 or THP-1 cell differentiation on sensitivity to harmful factors such as Aβ25-35 (0.001–5 µM) (considered as one of the major detrimental factors in the pathophysiology of Alzheimer’s disease) or lipopolysaccharide (1–100 µM) (LPS; a pro-inflammatory factor of bacterial origin). Results showed that in most of the tests performed, the response of PC12 and THP-1 cells induced to differentiation varied significantly from the effect in undifferentiated cells. In general, differentiated cells showed greater sensitivity to harmful factors in terms of metabolic activity and DNA damage, while in the case of the free radicals, the results were heterogeneous. Obtained data emphasize the importance of proper differentiation of cell lines of neoplastic origin in neurobiological research and standardization of cell culture handling protocols to ensure reliable results.


Cancers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2547
Author(s):  
Keunsoo Kang ◽  
Yoonjung Choi ◽  
Hyeonjin Moon ◽  
Chaelin You ◽  
Minjin Seo ◽  
...  

RAD51 is a recombinase that plays a pivotal role in homologous recombination. Although the role of RAD51 in homologous recombination has been extensively studied, it is unclear whether RAD51 can be involved in gene regulation as a co-factor. In this study, we found evidence that RAD51 may contribute to the regulation of genes involved in the autophagy pathway with E-box proteins such as USF1, USF2, and/or MITF in GM12878, HepG2, K562, and MCF-7 cell lines. The canonical USF binding motif (CACGTG) was significantly identified at RAD51-bound cis-regulatory elements in all four cell lines. In addition, genome-wide USF1, USF2, and/or MITF-binding regions significantly coincided with the RAD51-associated cis-regulatory elements in the same cell line. Interestingly, the promoters of genes associated with the autophagy pathway, such as ATG3 and ATG5, were significantly occupied by RAD51 and regulated by RAD51 in HepG2 and MCF-7 cell lines. Taken together, these results unveiled a novel role of RAD51 and provided evidence that RAD51-associated cis-regulatory elements could possibly be involved in regulating autophagy-related genes with E-box binding proteins.


2021 ◽  
Vol 22 (10) ◽  
pp. 5218
Author(s):  
Tomu Kamijo ◽  
Takahiro Kaido ◽  
Masahiro Yoda ◽  
Shinpei Arai ◽  
Kazuyoshi Yamauchi ◽  
...  

We identified a novel heterozygous hypofibrinogenemia, γY278H (Hiroshima). To demonstrate the cause of reduced plasma fibrinogen levels (functional level: 1.12 g/L and antigenic level: 1.16 g/L), we established γY278H fibrinogen-producing Chinese hamster ovary (CHO) cells. An enzyme-linked immunosorbent assay demonstrated that synthesis of γY278H fibrinogen inside CHO cells and secretion into the culture media were not reduced. Then, we established an additional five variant fibrinogen-producing CHO cell lines (γL276P, γT277P, γT277R, γA279D, and γY280C) and conducted further investigations. We have already established 33 γ-module variant fibrinogen-producing CHO cell lines, including 6 cell lines in this study, but only the γY278H and γT277R cell lines showed disagreement, namely, recombinant fibrinogen production was not reduced but the patients’ plasma fibrinogen level was reduced. Finally, we performed fibrinogen degradation assays and demonstrated that the γY278H and γT277R fibrinogens were easily cleaved by plasmin whereas their polymerization in the presence of Ca2+ and “D:D” interaction was normal. In conclusion, our investigation suggested that patient γY278H showed hypofibrinogenemia because γY278H fibrinogen was secreted normally from the patient’s hepatocytes but then underwent accelerated degradation by plasmin in the circulation.


Sign in / Sign up

Export Citation Format

Share Document