Linking atmospheric and hydrologic models at the basin scale

1996 ◽  
Vol 21 (3) ◽  
pp. 211-218 ◽  
Author(s):  
A. Limaye ◽  
Erik B. Kluzek ◽  
Gail E. Bingham ◽  
J.P. Riley
2017 ◽  
Vol 49 (4) ◽  
pp. 1271-1282 ◽  
Author(s):  
Tadesse Alemayehu ◽  
Fidelis Kilonzo ◽  
Ann van Griensven ◽  
Willy Bauwens

Abstract Accurate and spatially distributed rainfall data are crucial for a realistic simulation of the hydrological processes in a watershed. However, limited availability of observed hydro-meteorological data often challenges the rainfall–runoff modelling efforts. The main goal of this study is to evaluate the Climate Forecast System Reanalysis (CFSR) and Water and Global Change (WATCH) rainfall by comparing them with gauge observations for different rainfall regimes in the Mara Basin (Kenya/Tanzania). Additionally, the skill of these rainfall datasets to simulate the observed streamflow is assessed using the Soil and Water Assessment Tool (SWAT). The daily CFSR and WATCH rainfall show a poor performance (up to 52% bias and less than 0.3 correlation) when compared with gauge rainfall at grid and basin scale, regardless of the rainfall regime. However, the correlations for both CFSR and WATCH substantially improve at monthly scale. The 95% prediction uncertainty (95PPU) of the simulated daily streamflow, as forced by CFSR and WATCH rainfall, bracketed more than 60% of the observed streamflows. We however note high uncertainty for the high flow regime. Yet, the monthly and annual aggregated CFSR and WATCH rainfall can be a useful surrogate for gauge rainfall data for hydrologic application in the study area.


Water ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1389
Author(s):  
Mohammad M. Hasan ◽  
Courtenay Strong ◽  
Adam K. Kochanski ◽  
Steven J. Burian ◽  
Michael E. Barber

The performance of dynamically downscaled climate fields with respect to observed historical stream runoff has been assessed at basin scale using a physically distributed hydrologic model (DHSVM). The dynamically downscaled climate fields were generated by running the Weather Research & Forecasting (WRF) model at 4-km horizontal resolution with boundary conditions derived from the Climate Forecast System Reanalysis. Six hydrologic models were developed using DHSVM for six mountainous tributary watersheds of the Jordan River basin at hourly time steps and 30-m spatial resolution. The size of the watersheds varies from 19 km2 to 130 km2. The models were calibrated for a 6-year period from water year (WY) 1999–2004, using the observed meteorological data from the nearby Snow Telemetry (SNOTEL) sites of the Natural Resources Conservation Services (NRCS). Calibration results showed a very good fit between simulated and observed streamflow with an average Nash-Sutcliffe Efficiency (NSE) greater than 0.77, and good to very good fits in terms of other statistical parameters like percent bias (PBIAS) and coefficient of determination (R2). A 9-year period (WY 2001–2009) was selected as the historical baseline, and stream discharges for this period were simulated using dynamically downscaled climate fields as input to the calibrated hydrologic models. Historical baseline results showed a satisfactory fit of simulated and observed streamflow with an average NSE greater than 0.45 and a coefficient of determination above 0.50. Using volumetric analysis, it has been found that the total volume of water simulated using downscaled climate projections for the entire historical baseline period for all six watersheds is 4% less than the observed amount representing a very good estimation in terms of percent error volume (PEV). However, in the case of individual watersheds, analysis of total annual water volumes showed that estimated total annual water volumes were higher than the observed for Big Cottonwood, City Creek, Millcreek and lower than the observed total annual volume of water for Little Cottonwood, Red Butte Creek, and Parleys Littledell, demonstrating similar characteristics obtained from the calibration results. Seasonal analysis showed that the models can capture the flow volume observed for Big Cottonwood, City Creek and Red Butte Creek during the peak season, and the models can capture the flow volume observed for all the watershed satisfactorily except Big Cottonwood during the dry season. Study results indicated that the dynamically downscaled climate projections used in this study performed satisfactorily in terms of stream runoff, total flow volume, and seasonal flow analyses based on different statistical tests, and can satisfactorily capture flow patterns and flow volume for most of the watersheds considering the uncertainties associated with the study.


2012 ◽  
Vol 43 (1-2) ◽  
pp. 156-166 ◽  
Author(s):  
Xiuqin Fang ◽  
Liliang Ren ◽  
Qiongfang Li ◽  
Xiaofan Liu ◽  
Fei Yuan ◽  
...  

An algorithm for estimating daily spatial actual evapotranspiration (ET) from remotely sensed MODIS data is presented. It is based on the surface energy balance scheme and the modified Priestley–Taylor equation, and has been applied to the MODIS data acquired during growing seasons over the Laohahe River basin, northeastern China. Spatial distributed mapping of daily ET for 22 clear sky days in the year of 2000 from MODIS images over the study area were obtained. In order to validate ET values estimated from MODIS data, regional daily ET values were calculated using the lumped modified Xinanjiang hydrologic model and distributed SWAT model based on the water balance scheme, respectively. The relationship between actual daily ET estimated from MODIS images and basin-scale ET calculated from the hydrologic model were in good agreement with acceptable correlation coefficient. The results suggested that the algorithm is applicable and operational for estimating and mapping basin-scale distributed daily actual ET over the study area. In order to use the algorithm proposed by this paper for water resource management and agricultural decision making, the algorithm should be validated using more data and be tested under different environment and different land use scenario conditions in future work.


2019 ◽  
Author(s):  
Hamed D. Ibrahim

North and South Atlantic lateral volume exchange is a key component of the Atlantic Meridional Overturning Circulation (AMOC) embedded in Earth’s climate. Northward AMOC heat transport within this exchange mitigates the large heat loss to the atmosphere in the northern North Atlantic. Because of inadequate climate data, observational basin-scale studies of net interbasin exchange between the North and South Atlantic have been limited. Here ten independent climate datasets, five satellite-derived and five analyses, are synthesized to show that North and South Atlantic climatological net lateral volume exchange is partitioned into two seasonal regimes. From late-May to late-November, net lateral volume flux is from the North to the South Atlantic; whereas from late-November to late-May, net lateral volume flux is from the South to the North Atlantic. This climatological characterization offers a framework for assessing seasonal variations in these basins and provides a constraint for climate models that simulate AMOC dynamics.


1970 ◽  
Vol 1 (3) ◽  
pp. 181-205 ◽  
Author(s):  
ERIK ERIKSSON

The term “stochastic hydrology” implies a statistical approach to hydrologic problems as opposed to classic hydrology which can be considered deterministic in its approach. During the International Hydrology Symposium, held 6-8 September 1967 at Fort Collins, a number of hydrology papers were presented consisting to a large extent of studies on long records of hydrological elements such as river run-off, these being treated as time series in the statistical sense. This approach is, no doubt, of importance for future work especially in relation to prediction problems, and there seems to be no fundamental difficulty for introducing the stochastic concepts into various hydrologic models. There is, however, some developmental work required – not to speak of educational in respect to hydrologists – before the full benefit of the technique is obtained. The present paper is to some extent an exercise in the statistical study of hydrological time series – far from complete – and to some extent an effort to interpret certain features of such time series from a physical point of view. The material used is 30 years of groundwater level observations in an esker south of Uppsala, the observations being discussed recently by Hallgren & Sands-borg (1968).


1999 ◽  
Vol 40 (10) ◽  
pp. 103-110
Author(s):  
Carlo De Marchi ◽  
Pavel Ivanov ◽  
Ari Jolma ◽  
Ilia Masliev ◽  
Mark Griffin Smith ◽  
...  

This paper presents the major features of two decision support systems (DSS) for river water quality modeling and policy analysis recently developed at the International Institute of Applied Systems Analysis (IIASA), DESERT and STREAMPLAN. DESERT integrates in a single package data management, model calibration, simulation, optimization and presentation of results. DESERT has the flexibility to allow the specification of both alternative water quality models and flow hydraulics for different branches of the same river basin. Specification of these models can be done interactively through Microsoft® Windows commands and menus and an easy to use interpreted language. Detailed analysis of the effects of parameter uncertainty on water quality results is integrated into DESERT. STREAMPLAN, on the other hand, is an integrated, easy-to-use software system for analyzing alternative water quality management policies on a river basin level. These policies include uniform emission reduction and effluent standard based strategies, ambient water quality and least-cost strategies, total emission reduction under minimized costs, mixed strategies, local and regional policies, and strategies with economic instruments. A distinctive feature of STREAMPLAN is the integration of a detailed model of municipal wastewater generation with a water quality model and policy analysis tools on a river basin scale.


1996 ◽  
Vol 33 (4-5) ◽  
pp. 63-72
Author(s):  
Federico Preti

Monitoring and modelling are two complementary instruments necessary for the analysis of pollution phenomena, such as groundwater contamination and lakes eutrophication, often generated by diffuse (nonpoint) sources (NPS). A review of scientific literature has been conducted to obtain the information necessary to develop a correct methodology relative to environmental field monitoring and modelling agricultural nonpoint pollution. A questionnaire has been handed out to several researchers who are involved in this research field in order to learn of other pertinent activities being undertaken and to facilitate the exchange of information. Testing and verification of a methodology for the analysis of contamination caused by the use of agrochemicals, based on field monitoring studies and the application of a distributed nonpoint pollution model, have been conducted in Italy. Based on the research developed and practical experience, some of the main guidelines for conducting studies of pollution processes caused by agriculture as well as a summary of theoretical and practical aspects encountered in the design of field and basin scale model validation studies and in the use of published experimental results to test models can be proposed.


Sign in / Sign up

Export Citation Format

Share Document