Chapter 13. Bradykinin B2 receptors and signal transduction analyzed in NG108-15 neuroblastoma X glioma hybrid cells, B2 receptor-transformed CHO cells and ras-transformed NIH/3T3 fibroblasts

Author(s):  
Haruhiro Higashida ◽  
Minako Hashii ◽  
Shigeru Yokoyama ◽  
Megumi Taketo ◽  
Naoto Hoshi ◽  
...  
1996 ◽  
Vol 271 (36) ◽  
pp. 22175-22182 ◽  
Author(s):  
Bharvin K. R. Patel ◽  
Ling-Mei Wang ◽  
Chong-Chou Lee ◽  
William G. Taylor ◽  
Jacalyn H. Pierce ◽  
...  

2008 ◽  
Vol 294 (4) ◽  
pp. C1046-C1055 ◽  
Author(s):  
M.-B. Nielsen ◽  
S. T. Christensen ◽  
E. K. Hoffmann

Signaling in cell proliferation, cell migration, and apoptosis is highly affected by osmotic stress and changes in cell volume, although the mechanisms underlying the significance of cell volume as a signal in cell growth and death are poorly understood. In this study, we used NIH-3T3 fibroblasts in a serum- and nutrient-free inorganic medium (300 mosM) to analyze the effects of osmotic stress on MAPK activity and PDGF receptor (PDGFR)-β-mediated signal transduction. We found that hypoosmolarity (cell swelling at 211 mosM) induced the phosphorylation and nuclear translocation of ERK1/2, most likely via a pathway independent of PDGFR-β and MEK1/2. Conversely, hyperosmolarity (cell shrinkage at 582 mosM) moved nuclear and phosphorylated ERK1/2 to the cytoplasm and induced the phosphorylation and nuclear translocation of p38 and phosphorylation of JNK1/2. In a series of parallel experiments, hypoosmolarity did not affect PDGF-BB-induced activation of PDGFR-β, whereas hyperosmolarity strongly inhibited ligand-dependent PDGFR-β activation as well as downstream mitogenic signal components of the receptor, including Akt and the MEK1/2-ERK1/2 pathway. Based on these results, we conclude that ligand-dependent activation of PDGFR-β and its downstream effectors Akt, MEK1/2, and ERK1/2 is strongly modulated (inhibited) by hyperosmotic cell shrinkage, whereas cell swelling does not seem to affect the activation of the receptor but rather to activate ERK1/2 via a different mechanism. It is thus likely that cell swelling via activation of ERK1/2 and cell shrinkage via activation of the p38 and JNK pathway and inhibition of the PDGFR signaling pathway may act as key players in the regulation of tissue homeostasis.


1996 ◽  
Vol 319 (2) ◽  
pp. 649-656 ◽  
Author(s):  
Minako HASHII ◽  
Shigeru NAKASHIMA ◽  
Shigeru YOKOYAMA ◽  
Koh-ichi ENOMOTO ◽  
Yoshio MINABE ◽  
...  

Signal transduction from mouse bradykinin B2 receptors to calcium influx was studied in ras-transformed NIH/3T3 (DT) fibroblasts. DT cells were preloaded with fura-2 and whole-cell voltage-clamped. Activation of B2 receptors resulted in a decrease of cellular fluorescence at the excitation wavelength of 340, or 360 nm after MnCl2 application, in both the presence and absence of external Ca2+ in DT cells, at a holding potential of -40 mV. This Mn2+ entry through the Ca2+ influx pathway increased with membrane hyperpolarization. Internal application of inositol 1,3,4,5-tetrakisphosphate (InsP4), but not of inositol 1,4,5-trisphosphate, mimicked membrane potential-dependent Mn2+ entry. Bradykinin- and InsP4-induced Ca2+ influx was blocked by 10–100 µM genistein, a tyrosine kinase inhibitor. B2 receptor activation induced time-dependent tyrosine phosphorylation of mitogen-activated protein kinase and 120 kDa protein, which was dose-dependently inhibited by genistein. Bradykinin was unable to induce Ca2+ oscillations in genistein-treated DT cells. Our results show that bradykinin-induced Ca2+ influx and oscillations depend upon protein tyrosine phosphorylation. The results suggest that two bradykinin B2 receptor-activated signal pathways, protein tyrosine phosphorylation and formation of InsP4, merge at the Ca2+ influx process in ras-transformed NIH/3T3 fibroblasts.


2002 ◽  
Vol 76 (14) ◽  
pp. 6909-6918 ◽  
Author(s):  
Simon J. Walker ◽  
Massimo Pizzato ◽  
Yasuhiro Takeuchi ◽  
Stephen Devereux

ABSTRACT Certain glycosaminoglycans (GAGs), including heparin, inhibit infection by murine leukemia virus (MLV). We now show that this is due to inhibition of virus attachment independent of the interaction between viral envelope proteins (Env) and their cellular receptors. Heparin blocked the binding of both Env-deficient and amphotropic MLV (MLV-A) particles to NIH 3T3 fibroblasts, CHO cells which lack the amphotropic retroviral receptor Pit-2, and CHO cells transfected with Pit-2 (CHO-Pit-2). Heparin also inhibited the transduction of NIH 3T3 cells by MLV-A over a similar concentration range. This effect was observed within 15 min of exposure to retrovirus. Preloading target cells with heparin had no effect on transduction and both MLV-A and Env-deficient retrovirus bound efficiently to heparin-coated agarose beads, suggesting that heparin interacts with the virus rather than the target cell. This requires both a strong negative charge and a specific structure since GAGs with different charge and carbohydrate composition inhibited virus infection variably. The specificity of GAG-virus interaction also depends on the producer cells, since virus packaged by murine GP+EnvAM12 cells was 1,000-fold more sensitive to inhibition by chondroitin sulfate A than was virus packaged by human FLYA13 packaging cells. No evidence for an interaction between MLV and cell surface proteoglycans was found, however, since the attachment of MLV-A and envelope-defective virus to proteoglycan-deficient CHOpgsA-745 cells was similar to that seen with both wild-type and CHO-Pit-2 cells. Although the molecular mechanism is unclear, this study presents evidence that Env receptor-independent attachment is an important step in MLV infection.


2021 ◽  
Vol 22 (11) ◽  
pp. 5608
Author(s):  
Markéta Havrdová ◽  
Iztok Urbančič ◽  
Kateřina Bartoň Tománková ◽  
Lukáš Malina ◽  
Janez Štrancar ◽  
...  

It is important to understand the nanomaterials intracellular trafficking and distribution and investigate their targeting into the nuclear area in the living cells. In our previous study, we firstly observed penetration of nonmodified positively charged carbon dots decorated with quaternary ammonium groups (QCDs) into the nucleus of mouse NIH/3T3 fibroblasts. Thus, in this work, we focused on deeper study of QCDs distribution inside two healthy mouse NIH/3T3 and L929 cell lines by fluorescence microspectroscopy and performed a comprehensive cytotoxic and DNA damage measurements. Real-time penetration of QCDs across the plasma cell membrane was recorded, concentration dependent uptake was determined and endocytic pathways were characterized. We found out that the QCDs concentration of 200 µg/mL is close to saturation and subsequently, NIH/3T3 had a different cell cycle profile, however, no significant changes in viability (not even in the case with QCDs in the nuclei) and DNA damage. In the case of L929, the presence of QCDs in the nucleus evoked a cellular death. Intranuclear environment of NIH/3T3 cells affected fluorescent properties of QCDs and evoked fluorescence blue shifts. Studying the intracellular interactions with CDs is essential for development of future applications such as DNA sensing, because CDs as DNA probes have not yet been developed.


2019 ◽  
Vol 34 (8) ◽  
pp. 1536-1550 ◽  
Author(s):  
A Christine Kauerhof ◽  
Nour Nicolas ◽  
Sudhanshu Bhushan ◽  
Eva Wahle ◽  
Kate A Loveland ◽  
...  

Abstract STUDY QUESTION Does activin A contribute to testicular fibrosis under inflammatory conditions? SUMMARY ANSWER Our results show that activin A and key fibrotic proteins are increased in human testicular biopsies with leukocytic infiltrates and impaired spermatogenesis and in murine experimental autoimmune orchitis (EAO) and that activin A stimulates fibrotic responses in peritubular cells (PTCs) and NIH 3T3 fibroblasts. WHAT IS KNOWN ALREADY Fibrosis is a feature of EAO. Activin A, a regulator of fibrosis, was increased in testes of mice with EAO and its expression correlated with severity of the disease. STUDY DESIGN, SIZE, DURATION This is a cross-sectional and longitudinal study of adult mice immunized with testicular homogenate (TH) in adjuvant to induce EAO, collected at 30 (n = 6), 50 (n = 6) and 80 (n = 5) days after first immunization. Age-matched mice injected with adjuvant alone (n = 14) and untreated mice (n = 15) were included as controls. TH-immunized mice with elevated endogenous follistatin, injected with a non-replicative recombinant adeno-associated viral vector carrying a gene cassette of follistatin (rAAV-FST315; n = 3) or vector with an empty cassette (empty vector controls; n = 2) 30 days prior to the first immunization, as well as appropriate adjuvant (n = 2) and untreated (n = 2) controls, were also examined. Human testicular biopsies showing focal inflammatory lesions associated with impaired spermatogenesis (n = 7) were included. Biopsies showing intact spermatogenesis without inflammation, from obstructive azoospermia patients, served as controls (n = 7). Mouse primary PTC and NIH 3T3 fibroblasts were stimulated with activin A and follistatin 288 (FST288) to investigate the effect of activin A on the expression of fibrotic markers. Production of activin A by mouse primary Sertoli cells (SCs) was also investigated. PARTICIPANTS/MATERIALS, SETTING, METHODS Testicular RNA and protein extracts collected from mice at days 30, 50 and 80 after first immunization were used for analysis of fibrotic marker genes and proteins, respectively. Total collagen was assessed by hydroxyproline assay and fibronectin; collagen I, III and IV, α-smooth muscle actin (α-SMA) expression and phosphorylation of suppressor of mothers against decapentaplegic (SMAD) family member 2 were measured by western blot. Immunofluorescence was used to detect fibronectin. Fibronectin (Fn), αSMA (Acta2), collagen I (Col1a2), III (Col3a1) and IV (Col4a1) mRNA in PTC and NIH 3T3 cells treated with activin A and/or FST288 were measured by quantitative RT-PCR (qRT-PCR). Activin A in SC following tumour necrosis factor (TNF) or FST288 stimulation was measured by ELISA. Human testicular biopsies were analysed by qRT-PCR for PTPRC (CD45) and activin A (INHBA), hydroxyproline assay and immunofluorescence. MAIN RESULTS AND THE ROLE OF CHANCE Production of activin A by SC was stimulated by 25 and 50 ng/ml TNF (P < 0.01, P < 0.001, respectively) as compared to untreated cells. INHBA mRNA was increased in human testicular biopsies with leukocytic infiltrates and impaired spermatogenesis, compared with control biopsies (P < 0.05), accompanied by increased total collagen (P < 0.01) and fibronectin deposition. Total testicular collagen (P < 0.0001) and fibronectin protein expression (P < 0.05) were also increased in EAO, and fibronectin expression was correlated with the severity of the disease (r = 0.9028). In animals pre-treated with rAAV-FST315 prior to immunization with TH, protein expression of fibronectin was comparable to control. Stimulation of PTC and NIH 3T3 cells with activin A increased fibronectin mRNA (P < 0.05) and the production of collagen I (P < 0.001; P < 0.01) and fibronectin (P < 0.05). Moreover, activin A also increased collagen IV mRNA (P < 0.05) in PTC, while αSMA mRNA (P < 0.01) and protein (P < 0.0001) were significantly increased by activin A in NIH 3T3 cells. LARGE SCALE DATA N/A. LIMITATIONS, REASONS FOR CAUTION A limited number of human testicular specimens was available for the study. Part of the study was performed in vitro, including NIH 3T3 cells as a surrogate for testicular fibroblasts. WIDER IMPLICATIONS OF THE FINDINGS Resident fibroblasts and PTC may contribute to the progression of testicular fibrosis following inflammation, and activin A is implicated as a key mediator of this process. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by the National Health and Medical Research Council of Australia, the Victorian Government’s Operational Infrastructure Support Program and the International Research Training Group between Justus Liebig University (Giessen) and Monash University (Melbourne) (GRK 1871/1–2) on `Molecular pathogenesis on male reproductive disorders’ funded by the Deutsche Forschungsgemeinschaft and Monash University. The authors declare no competing financial interests.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Marina L. C. Caxito ◽  
Rachell R. Correia ◽  
Anne Caroline C. Gomes ◽  
Graça Justo ◽  
Marsen G. P. Coelho ◽  
...  

Xanthosoma sagittifoliumSchott is a herb of the Araceae family, popularly known as taioba, which is consumed as food in some regions of Brazil, Africa, and Asia. This species has already been evaluated for the antifungal activities. However, based on its potential antitumor activity, the present study further aimed to examine the antitumor, as well as chelation, activity ofX. sagittifoliumleaf extract. Results showed that hydroethanolic extract ofX. sagittifoliumleaves (HEXs-L) exhibits cytotoxic effects against the immortalized line of human T-lymphocytic (Jurkat) and myelogenous (K562) leukemia cells, but not nontumor RAW 264.7 macrophages or NIH/3T3 fibroblasts. HEXs-L inhibited 50.3% of Jurkat cell proliferation, reducing by 20% cells in G2/M phase, but increasing cells in sub-G1 phase, thereby inducing apoptosis by 54%. In addition, HEXs-L inhibited NO production by 59%, as determined by Griess reaction, and chelated 93.8% of free Fe(II), as demonstrated by ferrozine assay. Phytochemical studies were carried out by ESI-MS, identifying apigenin di-C-glycosides as major compounds. Overall, this work revealed that leaf extract ofXanthosoma sagittifoliumpresented chelating activity andin vitroantitumor activity, arresting cell cycle and inducing apoptosis of leukemia cells, thus providing evidence that taioba leaves may have practical application in cancer therapy.


FEBS Letters ◽  
1992 ◽  
Vol 312 (2-3) ◽  
pp. 223-228 ◽  
Author(s):  
Sylvie Hermouet ◽  
Philippe de Mazancourt ◽  
Allen M. Spiegel ◽  
Marilyn Gist Farquhar ◽  
Bridget S. Wilson

1999 ◽  
Vol 19 (7) ◽  
pp. 4739-4749 ◽  
Author(s):  
Elma R. Fernandes ◽  
Robert J. Rooney

ABSTRACT The adenovirus E1A gene can act as an oncogene or a tumor suppressor, with the latter effect generally arising from the induction of apoptosis or the repression of genes that provide oncogenic growth stimuli (e.g., HER-2/c-erbB2/neu) or increased metastatic invasiveness (e.g., metalloproteases). In this study, coexpression of E1A and p50E4F, a cellular transcription factor whose DNA binding activity is stimulated by E1A, suppressed colony formation by NIH 3T3 cells and transformation of primary rat embryo fibroblasts but had no observed effect in the absence of E1A. Domains in p50E4F required for stimulation of the adenovirus E4 promoter were required for the suppressive effect, indicating a transcriptional mechanism. In serum-containing media, retroviral expression of p50E4F in E1A13S/ras-transformed NIH 3T3 fibroblasts had little effect on subconfluent cultures but accelerated a decline in viability after the cultures reached confluence. Cell death occurred by both apoptosis and necrosis, with the predominance of each process determined by culture conditions. In serum-free media, p50E4F accelerated E1A-induced apoptosis. The results suggest that p50E4F sensitizes cells to signals or conditions that cause cell death.


Sign in / Sign up

Export Citation Format

Share Document