Effect of oxidative stress on development and DNA damage in in-vitro cultured bovine embryos by comet assay

2000 ◽  
Vol 54 (1) ◽  
pp. 137-145 ◽  
Author(s):  
M. Takahashi ◽  
K. Keicho ◽  
H. Takahashi ◽  
H. Ogawa ◽  
R.M. Schulte ◽  
...  
2021 ◽  
pp. 096032712110361
Author(s):  
Marzieh Farahani-Zangaraki ◽  
Azade Taheri ◽  
Mahmoud Etebari

Introduction: Hyperinsulinemia occurs in type 2 diabetic patients with insulin resistance. This increase in insulin levels in the blood increases reactive oxygen species production and oxidative stress, resulting in DNA damage. Carvedilol (CRV) is a non-selective beta-blocker, and research has shown that this compound and its metabolites have anti-oxidative properties. Carvedilol can, directly and indirectly, reduce reactive oxygen species (ROS) and has a protective effect on DNA damage from oxidative stress. Given the insolubility of CRV in water, finding new methods to increase its solubility can be an essential step in research. This study aimed to determine whether carvedilol could have a protective effect on insulin-induced genomic damage. Methods: We treated cells with insulin alone, amorphous-CRV alone, and amorphous-CRV and niosomal-CRV with insulin and DNA damage were investigated using the comet method to achieve this goal. Results: Our results showed that insulin in the studied concentration has a significant genotoxic effect and non-cytotoxic at higher concentrations. CRV, both in amorphous and niosome form, reduced insulin-induced DNA damage by reducing ROS production. The comet assay results demonstrate that treating HUVEC cells in pretreatment condition with amorphous-CRV and niosome-CRV significantly reduces DNA damage of insulin.


2020 ◽  
Author(s):  
Pégah Jalili ◽  
Sylvie HUET ◽  
Agnès Burel ◽  
Benjamin-Christoph Krause ◽  
Caroline Fontana ◽  
...  

Abstract Background: Exposure of consumers to aluminum-containing nanomaterials (Al NMs) through numerous products is an area of concern for public health agencies since human health risks are not completely elucidated. In addition, the available data on the genotoxicity of Al2O3 and Al0 NMs are inconclusive or rare. In order to provide further information, the present study investigated the in vitro genotoxic potential of Al0 and Al2O3 NMs in intestinal and liver cell models since these tissues represent organs which would be in direct contact or could experience potential accumulation following oral exposure. Methods: Differentiated human intestinal Caco-2 and hepatic HepaRG cells were exposed to Al0 and Al2O3 NMs (0.03 to 80 µg/cm2) and the results were compared with those obtained with the ionic form AlCl3. Several methods, including H2AX labelling, the alkaline comet assay and micronucleus (MN) assays were used. Oxidative stress and oxidative DNA damage were assessed using High Content Analysis (HCA) and the formamidopyrimidine DNA-glycosylase -modified comet assay respectively. Moreover, carcinogenic properties of Al NMs were investigated through the cell transforming assay (CTA) in Bhas 42 cells.Results: The three forms of Al did not induce chromosomal damage when tested in the MN assay. Furthermore, no cell transformation was observed in Bhas 42 cells. However, although no production of oxidative stress was detected in HCA assays, Al2O3 NMs induced oxidative DNA damage in Caco-2 cells in the comet assay following a 24 h treatment. Considerable DNA damage was observed with Al0 NMs in both cell lines in the comet assay, although this was likely due to interference with these NMs. Finally, no genotoxic effects were observed with AlCl3. Conclusion: The slight effects observed with Al NMs are therefore not likely to be related to ion release in the cell media.


2017 ◽  
Vol 324 ◽  
pp. 781-788 ◽  
Author(s):  
Cristina Araujo Matzenbacher ◽  
Ana Letícia Hilario Garcia ◽  
Marcela Silva dos Santos ◽  
Caroline Cardoso Nicolau ◽  
Suziane Premoli ◽  
...  

Author(s):  
Daisy Liu

Snow fungus, Tremella fuciformis, has been demonstrated to have numerous health benefits including purported chemopreventive properties due to free radical-scavenging ability. Protective effects derived from snow fungus polysaccharides are evaluated on Chinese hamster lung fibroblasts (CCL-39) exposed to carcinogen benzo[a]pyrene known to cause free radical formation and oxidative stress to cells. In this experiment, it was hypothesized that the naturally occurring polysaccharides in snow fungus are able to protect against or reduce oxidative stress-induced DNA damage. Polysaccharides were isolated through an alkaline extraction and in-vitro digestion. DNA damage was measured using the single-cell gel electrophoresis comet assay after exposure to benzo[a]pyrene and polysaccharide extract to lung fibroblasts. Results were calculated using the mean and standard deviation data of tail length and area, respectively. Each damaged cell was measured and analyzed through ImageJ Editing Software. The results indicate a promising trend which depict snow fungus polysaccharides yielding lower levels of DNA damage compared to cells exposed to benzo[a]pyrene and compared to the negative control (phosphate buffered saline and Dulbecco’s cell medium). This study suggests polysaccharides from Tremella fuciformis could truly prevent cellular DNA damage by protecting against oxidative stress.


Mutagenesis ◽  
2019 ◽  
Vol 34 (5-6) ◽  
pp. 431-431
Author(s):  
José M Enciso ◽  
Kristine B Gutzkow ◽  
Gunnar Brunborg ◽  
Ann-Karin Olsen ◽  
Adela López de Cerain ◽  
...  

2021 ◽  
Author(s):  
Xiaofei Jiao ◽  
Ning Liu ◽  
Yiding Xu ◽  
Huanyu Qiao

Perfluorononanoic acid (PFNA), a member of PFAS, is frequently detected in human blood and tissues, even in follicular fluid of women. The exposure of PFNA, but not PFOA and PFOS, is positively correlated with miscarriage and increased time to pregnancy. Toxicological studies indicated that PFNA exposure is associated with immunotoxicity, hepatotoxicity, developmental toxicity, and reproductive toxicity in animals. However, there is little information regarding the toxic effects of PFNA on oocyte maturation. In this study, we investigated the toxic effects of PFNA exposure on mouse oocyte maturation in vitro. Our results showed that 600 μM PFNA significantly inhibited germinal vesicle breakdown (GVBD) and polar body extrusion (PBE) in mouse oocytes. Our further study revealed that PFNA induced abnormal metaphase I (MI) spindle assembly, evidenced by malformed spindles and mislocalization of p-ERK1/2 in PFNA-treated oocytes. We also found that PFNA induced abnormal mitochondrial distribution and increased mitochondrial membrane potential. Consequently, PFNA increased reactive oxygen species (ROS) levels, leading to oxidative stress, DNA damage, and eventually early-stage apoptosis in oocytes. In addition, after 14 h culture, PFNA disrupted the formation of metaphase II (MII) spindle in most PFNA-treated oocytes with polar bodies. Collectively, our results indicate that PFNA interferes with oocyte maturation in vitro via disrupting spindle assembly, damaging mitochondrial functions, and inducing oxidative stress, DNA damage, and early-stage apoptosis.


2018 ◽  
Vol 115 (39) ◽  
pp. 9779-9784 ◽  
Author(s):  
Sangeeta Tiwari ◽  
Andries J. van Tonder ◽  
Catherine Vilchèze ◽  
Vitor Mendes ◽  
Sherine E. Thomas ◽  
...  

Reactive oxygen species (ROS)-mediated oxidative stress and DNA damage have recently been recognized as contributing to the efficacy of most bactericidal antibiotics, irrespective of their primary macromolecular targets. Inhibitors of targets involved in both combating oxidative stress as well as being required for in vivo survival may exhibit powerful synergistic action. This study demonstrates that the de novo arginine biosynthetic pathway in Mycobacterium tuberculosis (Mtb) is up-regulated in the early response to the oxidative stress-elevating agent isoniazid or vitamin C. Arginine deprivation rapidly sterilizes the Mtb de novo arginine biosynthesis pathway mutants ΔargB and ΔargF without the emergence of suppressor mutants in vitro as well as in vivo. Transcriptomic and flow cytometry studies of arginine-deprived Mtb have indicated accumulation of ROS and extensive DNA damage. Metabolomics studies following arginine deprivation have revealed that these cells experienced depletion of antioxidant thiols and accumulation of the upstream metabolite substrate of ArgB or ArgF enzymes. ΔargB and ΔargF were unable to scavenge host arginine and were quickly cleared from both immunocompetent and immunocompromised mice. In summary, our investigation revealed in vivo essentiality of the de novo arginine biosynthesis pathway for Mtb and a promising drug target space for combating tuberculosis.


Materials ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4062
Author(s):  
Till Jasper Meyer ◽  
Agmal Scherzad ◽  
Helena Moratin ◽  
Thomas Eckert Gehrke ◽  
Julian Killisperger ◽  
...  

Radioresistance is an important cause of head and neck cancer therapy failure. Zinc oxide nanoparticles (ZnO-NP) mediate tumor-selective toxic effects. The aim of this study was to evaluate the potential for radiosensitization of ZnO-NP. The dose-dependent cytotoxicity of ZnO-NP20 nm and ZnO-NP100 nm was investigated in FaDu and primary fibroblasts (FB) by an MTT assay. The clonogenic survival assay was used to evaluate the effects of ZnO-NP alone and in combination with irradiation on FB and FaDu. A formamidopyrimidine-DNA glycosylase (FPG)-modified single-cell microgel electrophoresis (comet) assay was applied to detect oxidative DNA damage in FB as a function of ZnO-NP and irradiation exposure. A significantly increased cytotoxicity after FaDu exposure to ZnO-NP20 nm or ZnO-NP100 nm was observed in a concentration of 10 µg/mL or 1 µg/mL respectively in 30 µg/mL of ZnO-NP20 nm or 20 µg/mL of ZnO-NP100 nm in FB. The addition of 1, 5, or 10 µg/mL ZnO-NP20 nm or ZnO-NP100 nm significantly reduced the clonogenic survival of FaDu after irradiation. The sub-cytotoxic dosage of ZnO-NP100 nm increased the oxidative DNA damage compared to the irradiated control. This effect was not significant for ZnO-NP20 nm. ZnO-NP showed radiosensitizing properties in the sub-cytotoxic dosage. At least for the ZnO-NP100 nm, an increased level of oxidative stress is a possible mechanism of the radiosensitizing effect.


2019 ◽  
Vol 20 (S1) ◽  
Author(s):  
Camila F. A. Giordani ◽  
Sarah Campanharo ◽  
Nathalie R. Wingert ◽  
Lívia M. Bueno ◽  
Joanna W. Manoel ◽  
...  

Abstract Background The presence of impurities in some drugs may compromise the safety and efficacy of the patient’s treatment. Therefore, establishing of the biological safety of the impurities is essential. Diabetic patients are predisposed to tissue damage due to an increased oxidative stress process; and drug impurities may contribute to these toxic effects. In this context, the aim of this work was to study the toxicity, in 3 T3 cells, of the antidiabetic agents sitagliptin, vildagliptin, and their two main impurities of synthesis (S1 and S2; V1 and V2, respectively). Methods MTT reduction and neutral red uptake assays were performed in cytotoxicity tests. In addition, DNA damage (measured by comet assay), intracellular free radicals (by DCF), NO production, and mitochondrial membrane potential (ΔψM) were evaluated. Results Cytotoxicity was observed for impurity V2. Free radicals generation was found at 1000 μM of sitagliptin and 10 μM of both vildagliptin impurities (V1 and V2). A decrease in NO production was observed for all vildagliptin concentrations. No alterations were observed in ΔψM or DNA damage at the tested concentrations. Conclusions This study demonstrated that the presence of impurities might increase the cytotoxicity and oxidative stress of the pharmaceutical formulations at the concentrations studied.


Sign in / Sign up

Export Citation Format

Share Document