The Palladium Alumina System: Influence Of The Preparation Procedures On The Structure Of The Metallic Phase

Author(s):  
S. Vasudevan ◽  
J. Cosyns ◽  
E. Lesage ◽  
E. Freund ◽  
H. Dexpert
Keyword(s):  
Author(s):  
C. Hayzelden ◽  
J. L. Batstone

Epitaxial reordering of amorphous Si(a-Si) on an underlying single-crystal substrate occurs well below the melt temperature by the process of solid phase epitaxial growth (SPEG). Growth of crystalline Si(c-Si) is known to be enhanced by the presence of small amounts of a metallic phase, presumably due to an interaction of the free electrons of the metal with the covalent Si bonds near the growing interface. Ion implantation of Ni was shown to lower the crystallization temperature of an a-Si thin film by approximately 200°C. Using in situ transmission electron microscopy (TEM), precipitates of NiSi2 formed within the a-Si film during annealing, were observed to migrate, leaving a trail of epitaxial c-Si. High resolution TEM revealed an epitaxial NiSi2/Si(l11) interface which was Type A. We discuss here the enhanced nucleation of c-Si and subsequent silicide-mediated SPEG of Ni-implanted a-Si.Thin films of a-Si, 950 Å thick, were deposited onto Si(100) wafers capped with 1000Å of a-SiO2. Ion implantation produced sharply peaked Ni concentrations of 4×l020 and 2×l021 ions cm−3, in the center of the films.


1991 ◽  
Vol 1 (10) ◽  
pp. 1365-1370 ◽  
Author(s):  
N. D. Kush ◽  
V. N. Laukhin ◽  
A. I. Schegolev ◽  
E. B. Yagubskii ◽  
E. Yu. Alikberova ◽  
...  

1976 ◽  
Vol 37 (C4) ◽  
pp. C4-267-C4-270 ◽  
Author(s):  
B. BATLOGG ◽  
A. SCHLEGEL ◽  
P. WACHTER

Author(s):  
Zhendong Lei ◽  
Xue Yu ◽  
Jing Zhan ◽  
Yong Zhang

1T-MoS2 is the metallic phase of molybdenum disulfide (MoS2), which has obvious advantages in energy storage applications compared with the 2H phase. However, the 1T phase is inherently unstable and...


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Xinyang Zhang ◽  
Bar Hen ◽  
Alexander Palevski ◽  
Aharon Kapitulnik

AbstractMany experiments investigating magnetic-field tuned superconductor-insulator transition (H-SIT) often exhibit low-temperature resistance saturation, which is interpreted as an anomalous metallic phase emerging from a ‘failed superconductor’, thus challenging conventional theory. Here we study a random granular array of indium islands grown on a gateable layer of indium-oxide. By tuning the intergrain couplings, we reveal a wide range of magnetic fields where resistance saturation is observed, under conditions of careful electromagnetic filtering and within a wide range of linear response. Exposure to external broadband noise or microwave radiation is shown to strengthen the tendency of superconductivity, where at low field a global superconducting phase is restored. Increasing magnetic field unveils an ‘avoided H-SIT’ that exhibits granularity-induced logarithmic divergence of the resistance/conductance above/below that transition, pointing to possible vestiges of the original emergent duality observed in a true H-SIT. We conclude that anomalous metallic phase is intimately associated with inherent inhomogeneities, exhibiting robust behavior at attainable temperatures for strongly granular two-dimensional systems.


1996 ◽  
Vol 03 (03) ◽  
pp. 1487-1494
Author(s):  
J.W. CHUNG

Atomic arrangements and electronic properties of the Li-adsorbed Si(001) surface are briefly reviewed. Characteristic features of a series of ordered structures with increasing Li coverage at room temperature are described. Structural models invoking a dimer flipping mechanism are discussed for the first two ordered structures, (2×2)-Li and (2×1)-Li, which are proposed as reconstructions of the silicon substrate. It is shown that the metallic phase found at an initial stage of adsorption is a result of substrate metallization, which explains the presence of an intraband surface plasmon. The features of the surface band structures for the first two ordered structures are discussed in terms of variation of the binding sites with coverage. All the unique features of the Li/Si(001) surface essentially exhibit the size effects of Li.


Sign in / Sign up

Export Citation Format

Share Document