Pivotal role of attractin in cell survival under oxidative stress in the zitter rat brain with genetic spongiform encephalopathy

2003 ◽  
Vol 111 (1-2) ◽  
pp. 111-122 ◽  
Author(s):  
Yuri Muto ◽  
Kenzo Sato
2005 ◽  
Vol 280 (42) ◽  
pp. 35767-35775 ◽  
Author(s):  
Antal Tapodi ◽  
Balazs Debreceni ◽  
Katalin Hanto ◽  
Zita Bognar ◽  
Istvan Wittmann ◽  
...  

2008 ◽  
Vol 36 (8) ◽  
pp. 2328-2334 ◽  
Author(s):  
Olivier Huet ◽  
Christaine Cherreau ◽  
Carole Nicco ◽  
Laurent Dupic ◽  
Marc Conti ◽  
...  

2012 ◽  
Vol 89 (1) ◽  
pp. 73-77 ◽  
Author(s):  
Seyed Fazel Nabavi ◽  
Solomon Habtemariam ◽  
Mahtab Jafari ◽  
Antoni Sureda ◽  
Seyed Mohammad Nabavi

2018 ◽  
Vol 15 (1) ◽  
pp. 71-77 ◽  
Author(s):  
Nagapuri Kiran Kumar ◽  
Mesram Nageshwar ◽  
Karnati Pratap Reddy

This study reports the ameliorative role of curcumin against sodium fluoride (NaF) induced oxidative stress in the brain of rats. The rats were divided into control, NaF (20 mg/kg), NaF+Curcumin (20mg/kg) and Curcumin (20mg/kg) groups respectively and treated at everyday interval for 60 consecutive days. Oxidative stress markers in the brain were measured at 60th day. NaF treatment significantly increased LPO content, but decreased the level of GSH and activities of SOD, GPx, and CAT the brain of rats in comparison to the control rats. Oral administration of curcumin to fluoride exposed rats significantly reversed the content of lipid peroxidation, as well as enhanced the level of GSH and SOD, GPx and CAT activities to normal compared to NaF exposed rats. Thus, curcumin showed the potential to prevent sodium fluoride induced oxidative damage in the brain of rats and curcumin may be useful agents against neurodegeneration in the brain.


Antioxidants ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 161
Author(s):  
Nikolaos Nenadis ◽  
Efi Samara ◽  
Fani Th. Mantzouridou

In the present work, the role of the carboxyl group of o-dihydroxybenzoic acids (pyrocatechuic, 2,3-diOH-BA and protocatechuic, 3,4-diOH-BA) on the protection against induced oxidative stress in Saccharomyces cerevisiae was examined. Catechol (3,4-diOH-B) was included for comparison. Cell survival, antioxidant enzyme activities, and TBARS level were used to evaluate the efficiency upon the stress induced by H2O2 or cumene hydroperoxide. Theoretical calculation of atomic charge values, dipole moment, and a set of indices relevant to the redox properties of the compounds was also carried out in the liquid phase (water). Irrespective of the oxidant used, 2,3-diOH-BA required by far the lowest concentration (3–5 μM) to facilitate cell survival. The two acids did not activate catalase but reduced superoxide dismutase activity (3,4-diOH-BA>2,3-diOH-BA). TBARS assay showed an antioxidant effect only when H2O2 was used; equal activity for the two acids and inferior to that of 3,4-diOH B. Overall, theoretical and experimental findings suggest that the 2,3-diOH-BA high activity should be governed by metal chelation. In the case of 3,4-diOH BA, radical scavenging increases, and chelation capacity decreases. The lack of carboxyl moiety (3,4-diOH B) adds to radical scavenging, interaction with lipophilic free radicals, and antioxidant enzymes. The present study adds to our knowledge of the antioxidant mechanism of dietary phenols in biological systems.


Oncotarget ◽  
2018 ◽  
Vol 9 (36) ◽  
pp. 24364-24380 ◽  
Author(s):  
Cristiana Angelucci ◽  
Alessio D’Alessio ◽  
Fortunata Iacopino ◽  
Gabriella Proietti ◽  
Alba Di Leone ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document