scholarly journals High-order WENO simulations of three-dimensional reshocked Richtmyer–Meshkov instability to late times: dynamics, dependence on initial conditions, and comparisons to experimental data

2010 ◽  
Vol 30 (2) ◽  
pp. 595-620 ◽  
Author(s):  
Oleg Schilling ◽  
Marco Latini
Author(s):  
Jingru Zhang ◽  
Yogesh Jaluria ◽  
Tiantian Zhang ◽  
Li Jia

Multiple microchannel heat sinks for potential use for electronic chip cooling are studied experimentally and numerically to characterize their thermal performance. The numerical simulation is driven by experimental data, which are obtained concurrently, to obtain realistic, accurate and validated numerical models. The ultimate goal is to design and optimize thermal systems. The experimental setup was established and liquid flow in the multiple microchannels was studied under different flow rates and heat influx. The temperature variation versus time was recorded by thermocouples, from which the time needed to reach steady state was determined. Temperature variations under steady state conditions were compared with three-dimensional steady state numerical simulation for the same boundary and initial conditions. The experimental data served as input parameters for the validation of the numerical model. In case of discrepancy, the numerical model was improved. A fairly good agreement between the experimental and simulation results was obtained. The numerical model also served to provide input that could be employed to improve and modify the experimental arrangement.


Author(s):  
Athanasios Donas ◽  
Ioannis Famelis ◽  
Peter C Chu ◽  
George Galanis

The aim of this paper is to present an application of high-order numerical analysis methods to a simulation system that models the movement of a cylindrical-shaped object (mine, projectile, etc.) in a marine environment and in general in fluids with important applications in Naval operations. More specifically, an alternative methodology is proposed for the dynamics of the Navy’s three-dimensional mine impact burial prediction model, Impact35/vortex, based on the Dormand–Prince Runge–Kutta fifth-order and the singly diagonally implicit Runge–Kutta fifth-order methods. The main aim is to improve the time efficiency of the system, while keeping the deviation levels of the final results, derived from the standard and the proposed methodology, low.


2021 ◽  
Vol 40 (3) ◽  
Author(s):  
Bo Hou ◽  
Yongbin Ge

AbstractIn this paper, by using the local one-dimensional (LOD) method, Taylor series expansion and correction for the third derivatives in the truncation error remainder, two high-order compact LOD schemes are established for solving the two- and three- dimensional advection equations, respectively. They have the fourth-order accuracy in both time and space. By the von Neumann analysis method, it shows that the two schemes are unconditionally stable. Besides, the consistency and convergence of them are also proved. Finally, numerical experiments are given to confirm the accuracy and efficiency of the present schemes.


Author(s):  
Rahid Zaman ◽  
Yujiang Xiang ◽  
Jazmin Cruz ◽  
James Yang

In this study, the three-dimensional (3D) asymmetric maximum weight lifting is predicted using an inverse-dynamics-based optimization method considering dynamic joint torque limits. The dynamic joint torque limits are functions of joint angles and angular velocities, and imposed on the hip, knee, ankle, wrist, elbow, shoulder, and lumbar spine joints. The 3D model has 40 degrees of freedom (DOFs) including 34 physical revolute joints and 6 global joints. A multi-objective optimization (MOO) problem is solved by simultaneously maximizing box weight and minimizing the sum of joint torque squares. A total of 12 male subjects were recruited to conduct maximum weight box lifting using squat-lifting strategy. Finally, the predicted lifting motion, ground reaction forces, and maximum lifting weight are validated with the experimental data. The prediction results agree well with the experimental data and the model’s predictive capability is demonstrated. This is the first study that uses MOO to predict maximum lifting weight and 3D asymmetric lifting motion while considering dynamic joint torque limits. The proposed method has the potential to prevent individuals’ risk of injury for lifting.


2020 ◽  
Vol 21 (20) ◽  
pp. 7702 ◽  
Author(s):  
Sofya I. Scherbinina ◽  
Philip V. Toukach

Analysis and systematization of accumulated data on carbohydrate structural diversity is a subject of great interest for structural glycobiology. Despite being a challenging task, development of computational methods for efficient treatment and management of spatial (3D) structural features of carbohydrates breaks new ground in modern glycoscience. This review is dedicated to approaches of chemo- and glyco-informatics towards 3D structural data generation, deposition and processing in regard to carbohydrates and their derivatives. Databases, molecular modeling and experimental data validation services, and structure visualization facilities developed for last five years are reviewed.


Author(s):  
Stephan Uhkoetter ◽  
Stefan aus der Wiesche ◽  
Michael Kursch ◽  
Christian Beck

The traditional method for hydrodynamic journal bearing analysis usually applies the lubrication theory based on the Reynolds equation and suitable empirical modifications to cover turbulence, heat transfer, and cavitation. In cases of complex bearing geometries for steam and heavy-duty gas turbines this approach has its obvious restrictions in regard to detail flow recirculation, mixing, mass balance, and filling level phenomena. These limitations could be circumvented by applying a computational fluid dynamics (CFD) approach resting closer to the fundamental physical laws. The present contribution reports about the state of the art of such a fully three-dimensional multiphase-flow CFD approach including cavitation and air entrainment for high-speed turbo-machinery journal bearings. It has been developed and validated using experimental data. Due to the high ambient shear rates in bearings, the multiphase-flow model for journal bearings requires substantial modifications in comparison to common two-phase flow simulations. Based on experimental data, it is found, that particular cavitation phenomena are essential for the understanding of steam and heavy-duty type gas turbine journal bearings.


1984 ◽  
Vol 62 (3) ◽  
pp. 596-600 ◽  
Author(s):  
R. G. Barradas ◽  
D. S. Nadezhdin

The cathodic reduction of the lead monoxide layer formed on lead in 30% aqueous H2SO4 under anodic oxidation at 0.6 V (vs. Hg/HgSO4 reference electrode) was investigated by linear sweep voltammetry, potential step and admittance measurements. The experimental data were analyzed respectively in terms of thin-layer electrochemistry, electrocrystallisation, and changes of resistance of the PbO layer under reduction. The results seem to be best interpreted from the theory of three-dimensional electrocrystallisation as PbO is reduced to Pb. At sub-zero temperatures the PbO peak observed on our voltammograms and potentiostatic current time transients reveals the splitting of the curves into two peaks, which may be a result of reduction of the same material but of different phases, namely, orthorhombic and tetragonal PbO.


1962 ◽  
Vol 99 (6) ◽  
pp. 558-569 ◽  
Author(s):  
Peter J. Wyllie

AbstractBowen's petrogenetic grid is a PT projection containing univariant curves for decarbonation, dehydration, and solid-solid reactions, with vapour pressure (Pf) equal to total pressure (Ps). Analysis of experimental data in the system MgO–CO2–H2O leads to an expansion of this grid. Three of the important variables in metamorphism when Pf = Ps are P, T, and variation of the pore fluid composition between H2O and CO2. These can be illustrated in a three-dimensional petrogenetic model; one face is a PT plane for reactions occurring with pure H2O, and the opposite face is a similar plane for reactions with pure CO2; these are separated by an axis for pore fluid composition varying between H2O and CO2. Superposition of the PT faces of the model provides the petrogenetic grid. The reactions within the model are represented by divariant surfaces, which may meet along univariant lines. For dissociation reactions, the surfaces curve towards lower temperatures as the proportion of non-reacting volatile increases, and solid-solid reaction surfaces are parallel to the vapour composition axis and perpendicular to the PT axes. The relative temperatures of reactions and the lines of intersections of the surfaces can be illustrated in isobaric sections. Isobaric sections are used to illustrate reactions proceeding at constant pressure with (1) pore fluid composition remaining constant during the reaction, with temperature increasing (2) pore fluid composition changing during the reaction, with temperature increasing, and (3) pore fluid changing composition at constant temperature. The petrogenetic model provides a convenient framework for a wide range of experimental data.


Sign in / Sign up

Export Citation Format

Share Document