Erosion resistance of CVD diamond-coated titanium alloy for aerospace applications

1999 ◽  
Vol 112 (1-3) ◽  
pp. 129-132 ◽  
Author(s):  
T. Grögler ◽  
E. Zeiler ◽  
A. Franz ◽  
O. Plewa ◽  
S.M. Rosiwal ◽  
...  
2020 ◽  
Vol 321 ◽  
pp. 04013
Author(s):  
Sesh Tamirisakandala ◽  
Ernie Crist ◽  
Fusheng Sun ◽  
Matthew Dahar

Next generation fuel-efficient jet engines are running hotter presenting a structural challenge for the exhaust systems and structures adjacent to the engines. A conventional and affordable titanium alloy with superior oxidation resistance provides significant weight reductions and associated cost savings by eliminating the need for high density material systems such as nickel-base superalloys for service temperatures in between current titanium and nickel, enabling major technology advancement in high temperature aerospace applications. This paper presents an overview of Arconic’s engineered material ARCONIC-THORTM to address the needs of future aerospace systems.


2010 ◽  
Vol 150-151 ◽  
pp. 51-55 ◽  
Author(s):  
Jun Du ◽  
Ping Zhang ◽  
Jun Jun Zhao ◽  
Zhi Hai Cai

Titanium alloys are susceptible to sand erosion, hard zirconium nitride coatings have been deposited onto titanium alloys by Physical vapor deposition (PVD) in order to improve erosion resistance. Al and Cu were added into ZrN coatings to strength and toughing the coating. The microstructure and mechanical properties of ZrAlCuN coating were studied. Erosion tests were conducted to evaluate anti-erosion ability. Erosion rates were measured and characteristic damage features were identified on the surface of eroded specimens. The mechanisms of erosion are discussed in order to explain the promising performance of materials in erosive conditions. It was found that there is an significant increase of erosion resistance because of the increase of hardness and toughness.


2018 ◽  
Vol 385 ◽  
pp. 449-454 ◽  
Author(s):  
Artem Alimov ◽  
Dmitry Zabelyan ◽  
Igor Burlakov ◽  
Igor Korotkov ◽  
Yuri Gladkov

Finite element method is the most powerful tool for development and optimization of the metal forming processes. Analysis of titanium alloy critical parts should include the prediction of microstructure since their mechanical and technological properties essentially depend on the type and parameters of the microstructure. The technological process of parts production for aerospace applications is multi-operational and consists of deformation, heating and cooling stages. Therefore, it is necessary to simulate the microstructure evolution to obtain high quality parts. In presented paper FE simulation coupled with microstructure evolution during hot forging of TC11 titanium alloy has been performed by QForm FEM code. Constitutive relationships, friction conditions and microstructure evolution model have been established using the experiments. The kinetics of phase transformations has been described by the Johnson-Mehl-Avrami-Kolmogorov (JMAK) phenomenological model. The approach is illustrated by industrial case study that proved its practical applicability and economic advantages for technology development of titanium alloy critical parts.


Author(s):  
Anil K. Srivastava ◽  
Jon Iverson

Titanium and its alloys have seen increased utilization in military and aerospace applications due to combination of high specific strength, toughness, corrosion resistance, elevated-temperature performance and compatibility with polymer composite materials. Titanium alloys are difficult to machine due to their inherent low thermal conductivity and higher chemical reactivity with other materials at elevated temperatures. In general, temperature related machining difficulties are encountered at production speeds in the range of 60 m/min and high-speed machining of these alloys has created considerable interest to researchers, tool manufacturers and end users. This paper provides recent results obtained during turning operation with the aim of improving machinability of titanium alloys. Several tests have been conducted using (i) micro-edge prep geometry of the inserts, (ii) ultra-hard PVD coated, and (iii) nano-layered coated inserts and the effects of speeds and feeds during turning of Ti-6Al-4V titanium alloy are discussed. The initial tests have been conducted under orthogonal (2-D) cutting conditions with no coolant application. Based on these results, several oblique cutting (3-D) tests have been designed and conducted to study the effect of various types of ultra-hard and nano-layered coatings at higher cutting speeds under flooded coolant conditions. The effects of speed and feed on cutting force and tool wear are presented in this paper.


Metals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1185
Author(s):  
Zhimin Wang ◽  
Lulu Sun ◽  
Wenchao Ke ◽  
Zhi Zeng ◽  
Wei Yao ◽  
...  

The joining of high-temperature titanium alloy is attracting much attention in aerospace applications. However, the defects are easily formed during laser welding of titanium alloys, which weakens the joint mechanical properties. In this work, laser oscillating welding was applied to join TC31 high-temperature titanium alloy. The weld appearance, microstructure and mechanical properties of the laser welds were investigated. The results show that sound joints were formed by using laser oscillating welding method, and a large amount of martensite was presented in the welds. High mechanical properties were achieved, which was approaching to (or even equaled) the strength of the base material. The joints exhibited a tensile strength of up to 1200 ± 10 MPa at room temperature and 638 ± 6 MPa at 923 K. Laser oscillating welding is beneficial to the repression of porosity for welding high-temperature titanium alloy.


2020 ◽  
pp. 245-270
Author(s):  
Mutiu F. Erinosho ◽  
Esther T. Akinlabi ◽  
Sisa Pityana

The laser metal deposition process possesses the combination of metallic powder and laser beam respectively. However, these combinations create an adhesive bonding that permanently solidifies the laser-enhanced-deposited powders. Titanium alloys (Ti6Al4V) Grade 5 have been regarded as the most used alloys for the aerospace applications, due to their lightweight properties and marine application due to their excellent corrosion resistance. The improvements in the surface integrity of the alloy have been achieved successively with the addition of Cu through the use of Ytterbium laser system powered at maximum of 2000 Watts. The motivation for this research work can be attributed to the dilapidation of the surface of titanium alloy, when exposed to marine or sea water for a longer period of time. This chapter provides the surface modification of titanium alloy with the addition of percentage range of Cu within its lattices; and the results obtained from the characterizations conducted on the laser deposited Ti6Al4V/Cu alloys have been improved.


Sign in / Sign up

Export Citation Format

Share Document